首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
安全科学   1篇
综合类   2篇
基础理论   2篇
评价与监测   4篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2009年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
为研究新冠肺炎疫情常态化管控下,济南市春节前后PM2.5中二次组分的变化特征、气粒分配规律及其影响因素,本文对2021年2月1-27日春节前、春节期间和春节后的3个时段济南市区在线监测的水溶性离子、碳组分及气态前体物质量浓度小时数据进行分析.结果表明,2021年疫情常态化管控下济南市春节前后二次组分浓度与2020年同比均明显下降,ρ(NO3-)、ρ(SO42-)、ρ(NH4+)和ρ(SOA)分别下降53.09%、58.32%、51.17%和61.84%,其中二次无机组分(NO3-、SO42-、NH4+之和)和SOA在PM2.5中的占比分别为54.07%和8.20%,春节期间PM2.5及二次组分在10—18时浓度较低,与春节期间白天人为活动相对减少,机动车、建筑工...  相似文献   
2.
当前环境污染呈现出了复杂性、持续性、潜伏性和广泛性的新特点,环境监测作为环境保护的基础,能否监测出污染状况,将对我国的环境保护产生重大的影响。为此,在新的形式下,针对环境污染呈现的新的特点,不断探索环境监测管理的新模式,以科学发展观为指导,加强环境监测的能力建设,实现监测工作规范化、监测手段现代化、监测方法标准化、监测管理科学化、日常工作制度化,使环境监测工作向更深层次发展,更好地为环境保护和经济建设服务。  相似文献   
3.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43 μg/m3)高于其他2个监测时段(134.29、107.07 μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对臭氧生成贡献较高的物种主要有对/间二甲苯、甲苯等芳香烃,乙醇和甲基丙烯酸甲酯等含氧有机物,异戊二烯和丙烯等烯烃类物种。MCM模式结果显示:5月A时段监测期间的臭氧光化学生成速率大于9月B时段和11月C时段,O3生成过程主要受甲基过氧自由基(CH3O2)+NO 和过氧化羟基自由基(HO2)+NO 控制。相对增量反应敏感性实验结果显示:3个监测时段臭氧生成均处于VOCs控制区,5月A时段,控制异戊二烯、芳香烃类物种可以大幅减少臭氧的生成,9月B时段需主要控制芳香烃和含氧有机物的排放,11月C时段则需控制芳香烃物种的排放。就VOCs单体而言,3个监测时段减少对/间二甲苯的浓度,对臭氧生成影响较大。走航溯源耦合在线监测方法可以实现臭氧污染快速原位溯源。  相似文献   
4.
荧光法快速测定水中粪大肠菌群   总被引:1,自引:1,他引:0  
为研究荧光法测定水中粪大肠菌群的适用性,在6家实验室使用荧光法对粪大肠菌群的标准菌株和实际水样进行测定,并与多管发酵法进行比对。结果表明:6家实验室对标准菌株的监测结果均在误差范围内,实验室内相对误差为-2. 75%~1. 71%,准确度较高;对3个不同浓度实际水样进行精密度测定,实验室内相对标准偏差分别为1. 30%~3. 93%、1. 94%~4. 72%、1. 88%~4. 54%,实验室间的相对标准偏差分别为1. 14%、1. 59%、1. 72%,精密度较高;用荧光法与多管发酵法同时测定实际水样,2种方法测试结果线性相关性良好且变化趋势相同,对测试数据进行t检验,2种方法测试结果无显著差异。  相似文献   
5.
徐标 《环境研究与监测》2009,22(3):30-31,43
当前环境污染呈现出了复杂性、持续性、潜伏性和广泛性的新特点,环境监测作为环境保护的基础,能否监测出污染状况,将对我国的环境保护产生重大的影响。为此,在新的形式下,针对环境污染呈现的新特点,不断探索环境监测管理的新模式,以科学发展观为指导,加强环境监测的能力建设,实现监测工作规范化、监测手段现代化、监测方法标准化、监测管理科学化、日常工作制度化,使环境监测工作向更深层次发展,更好地为环境保护和经济建设服务。  相似文献   
6.
为分析济南市PM2.5中二次组分的时空变化和影响因素,对济南市春季(2019年5月16—25日)、秋季(2019年10月15—24日)和冬季(2019年12月17—2020年1月16日)4个典型点位的PM2.5样品进行连续采样,并测定了PM2.5中水溶性离子、有机碳(OC)和元素碳(EC)的含量。结果表明:物流交通区的二次组分质量浓度最高(56.13μg·m?3),钢铁工业区的二次组分浓度比城市市区高,但是二次组分占比较城市市区低,清洁对照点的浓度和占比最低;济南市4个功能区SO42?和NO3?转化率均高于0.1,除清洁对照点外,城市市区、钢铁工业区和物流交通区的SO42?转化率明显高于NO3?转化率;济南市春季、秋季和冬季的ρ(NO3?)/ρ(SO42?)分别为0.67、2.57和1.98,春季PM2.5浓度以固定源贡献为主,秋季和冬季以移动源贡献为主;运用ISORROPIA热力学模型分析了含水量和pH对二次组分生成的影响,含水量会随着污染增大而增大,酸度和含水量对二次无机组分的转化机理产生影响,酸度会抑制二次无机组分的生成,而含水量会促进二次组分的生成;后向轨迹聚类分析结果表明,占比最高的轨迹(29.2%)来自东北方向的滨州和东营,基于潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)分析PM2.5中二次组分质量浓度的潜在污染源区域,SO42?的主要贡献源区在济南市区北部的济阳区和东北方向的滨州、东营等,NO3?和NH4+的主要贡献源区在济南市区北方向的济阳区、东北方向的章丘区和南方向的莱芜区等。该研究结果可为中国北方城市细颗粒物进一步的治理和防控提供数据支撑和理论依据。  相似文献   
7.
通过实验室模拟及现场检测,对烟道外过滤的β射线法测定固定污染源废气中颗粒物浓度的检出限、精密度、准确度、可靠性等进行分析研究。结果表明:β射线法监测颗粒物方法检出限为0.1 mg/m3;低、中、高3个不同质量浓度水平的颗粒物标准样品6次监测结果的RSD分别为4.6%、2.7%、1.6%,相对误差分别为(2.9±9.5)%、(0.8±5.5)%、(1.5±3.2)%,标准样品测定的颗粒物质量浓度越高,精密度和准确度越好。将该方法与重量法监测结果对比,发现两种方法测量数值变化趋势一致,且颗粒物浓度越高,两种方法相对偏差越小,一致性越高。  相似文献   
8.
孙友敏  范晶  徐标  李彦  韩红  张桂芹 《环境科学》2022,43(5):2304-2316
为探究城市不同功能区大气PM2.5污染水平、成分季节差异特征以及来源,采集了省会城市济南市2019年不同季节(春、秋、冬)3类典型功能区(城市市区、工业区、城乡结合区)和环境背景点植物园区的PM2.5样品,对其浓度[ρ(PM2.5)]、化学组分(水溶性离子、碳质组分、元素)和来源进行分析.结果表明采样期间3类功能区ρ(PM2.5)在空间上呈现:工业区[(89.88±49.25)μg·m-3]>城乡结合区[(86.73±57.24)μg·m-3]>城市市区[(70.70±44.89)μg·m-3],远大于植物园区[(44.36±21.54)μg·m-3].各功能区ρ(PM2.5)秋冬季明显高于春季,冬季最高值出现在城乡结合区,春季和秋季均为工业区最高.工业区各季PM2.5中的水溶性离子浓度较高,主要的水溶性离子NO-3  相似文献   
9.
为探究轨道交通网络多个关联站点受到蓄意攻击后网络的脆弱性以及不同攻击下影响的差异,量测分析多站点之间的关联性,给出关联站点协同攻击下轨道交通网络脆弱性量化方法,提出以脆弱性最大化为目标的攻击模型,通过免疫算法求解模型,得到最优攻击策略,并以上海市地铁网络为例,研究多站点协同攻击下轨道交通网络脆弱性。结果表明:多站点蓄意攻击下轨道交通网络脆弱性不仅取决于每个站点的重要程度,还取决于不同站点之间的关联性,尤其是空间位置关联性和乘客出行关联性。位于不同线路且客流量较大的多个换乘站点受到协同攻击下轨道交通网络脆弱性最高,占网络站点总数3.56%的多个站点同时受到攻击后,轨道交通网络性能损失最高可达63.61%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号