首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   2篇
综合类   4篇
评价与监测   1篇
  2024年   1篇
  2023年   1篇
  2019年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
寇萌  樊宇  苏梦贤  熊娟  汪明霞  谭文峰 《环境科学》2023,44(11):6319-6327
选用海伦黑土、咸宁棕红壤和长武黑垆土这3种土壤,分别设置4组不同含量配比的Pb和Cd复合处理,进行为期5个月的小麦种植(郑麦9023号)盆栽试验,结合小麦植株各部位Pb和Cd含量,分析3种土壤-小麦体系中Pb和Cd交互作用对小麦富集转运重金属的影响.结果表明,低pH棕红壤水溶态Cd和Pb含量最高,且土壤颗粒表面Pb和Cd交互作用显著,高有机质黑土及高碳酸钙含量的黑垆土中Cd和Pb活性较低.3种土壤中黑垆土种植小麦的株高和干重表现最差,但Pb和Cd复合作用使其株高较对照增加了2.68~8.49 cm, Pb和Cd交互作用对黑土中小麦的株高和干重影响最小,但抑制了棕红壤中小麦生长.3种土壤-小麦体系的Pb和Cd交互作用差异较大,棕红壤中Pb和Cd间存在协同作用,125 mg·kg-1和250 mg·kg-1Pb处理下棕红壤种植的小麦籽粒Pb含量随Cd添加量升高分别显著增加73.2%和19.1%;黑土中Pb和Cd间存在拮抗作用,0.3 mg·kg-1和0.6 mg·kg-1 Cd处理下黑土中小麦籽粒Cd含...  相似文献   
2.
微生物是调节土壤磷循环的关键驱动力.阐明土壤解磷菌的微生物矿化过程对于提高植物养分吸收率和作物产量具有重要意义.通过测定柑橘园与毗邻的自然林地土壤编码碱性磷酸酶基因(phoD)丰度、解磷细菌群落多样性和土壤无机磷组分,探究柑橘种植对土壤微生物获取磷策略的影响机制.结果表明,柑橘种植导致土壤pH下降,土壤有效磷累积,ω(有效磷)平均值高达112 mg·kg-1,显著高于毗邻的自然林地(3.7 mg·kg-1).柑橘种植也会影响土壤磷素组成,柑橘土壤含有较高的可溶态磷(CaCl2-P)、柠檬酸提取态磷(Citrate-P)和矿物结合态磷(HCl-P).自然林地土壤各磷组分均显著低于柑橘土壤,而phoD基因丰度和碱性磷酸酶活性显著高于柑橘土壤.高通量测序结果表明,柑橘土壤解磷细菌Shannon指数(4.61)显著低于自然林地(5.35),群落结构也有别于自然林地.柑橘种植改变了土壤解磷菌的群落组成,自然林地变形菌门的相对丰度显著低于柑橘土壤.土壤有效磷含量与碱性磷酸酶活性呈显著负相关,表明土壤高磷累积抑制土壤解磷细菌的活性.柑橘种植改变了土壤微生物对磷的获取策略,在柑橘园中,土壤微生物主要依赖外源磷,而自然林地土壤微生物主要以微生物分泌碱性磷酸酶矿化有机磷来获取磷的方式满足其生长需求.  相似文献   
3.
在实验室模拟条件下,研究了Shewanella oneidensis MR-1作用下Fe(III)还原和As(III)氧化动力学及其影响因素.结果表明,Fe(III)被还原为Fe(II)的同时伴随着As(III)氧化为As(V);S.oneidensis MR-1在含低浓度As(III)培养基上生长良好,在高浓度培养基上生长被抑制;As(III)通过制约菌体的生长与活性来抑制Fe(III)异化还原.同样,适量浓度的Fe(III)含量对As(III)氧化转化有很强的促进作用,但是过高浓度的Fe(III)浓度使得溶液中产生过多的Fe(II),从而对As(III)氧化转化有一定程度的抑制作用.此外,弱碱环境更有利于As(III)氧化转化.  相似文献   
4.
通过在武汉某高校校园的生活区、运动场、实验田区和施工区布设4个采样点,检测分析PM_(2.5)及其中金属元素和水溶性无机离子的含量。结果表明,施工区PM_(2.5)平均值超标0. 3倍,其余三区均达标,校园大气环境总体良好; PM_(2.5)中质量浓度较高的元素为Fe、Mg、Mn、Pb; Cd、Pb的富集因子 100,判断其来源于建筑施工、实验田翻耕、汽车尾气等人为污染; PM_(2.5)中主要水溶性无机离子为SO_4~(2-)和NO_3~-,生活区、施工区的NO_3~-及生活区的SO_4~(2-)主要来源于二次污染,施工区SO_4~(2-)来源于二次污染和施工材料; X射线衍射显示施工区PM_(2.5)中存在石英、高岭石等矿物。  相似文献   
5.
在实验室模拟条件下,研究了Shewanella oneidensis MR-1作用下Fe(III)还原和As(III)氧化动力学及其影响因素.结果表明,Fe(III)被还原为Fe(II)的同时伴随着As(III)氧化为As(V);S. oneidensis MR-1 在含低浓度As(III)培养基上生长良好,在高浓度培养基上生长被抑制;As(III)通过制约菌体的生长与活性来抑制Fe(III)异化还原.同样,适量浓度的Fe(III)含量对As(III)氧化转化有很强的促进作用,但是过高浓度的Fe(III)浓度使得溶液中产生过多的Fe(II),从而对As(III)氧化转化有一定程度的抑制作用.此外,弱碱环境更有利于As(III)氧化转化.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号