首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
环保管理   1篇
综合类   1篇
评价与监测   5篇
  2021年   1篇
  2011年   2篇
  2008年   1篇
  2007年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 ??g/L (average (n?=?48), 10.33 ± 19.94 ??g/L) and 5.24?C3,722.87 ng/g dw [average (n?=?48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.  相似文献   
2.
西安作为汾渭平原地区最大的城市,大气颗粒物污染形势严峻.2017年夏季期间,在西安市浐灞生态园区运用气溶胶化学组分监测仪,对大气亚微米颗粒物中的非难挥发性组分(NR-PM1)进行了在线监测.观测期间NR-PM1的平均质量浓度为(30.1?±?15.4)μg???m?3.其中有机物含量最高,占NR-PM1总质量浓度的63%,其次为硫酸盐(18%)、铵盐(10%)和硝酸盐(9%).运用正交矩阵因子分析法共解析出两个主要因子,包括烃类有机组分(HOA)和含氧有机组分(OOA),分别占有机物总质量浓度的43%和55%.HOA主要由机动车排放贡献,而OOA主要由气态污染物的二次反应生成.气象因素对NR-PM1的浓度与化学组分的影响较为显著.高硝酸盐阶段发生在高湿、低温条件,可能是由氮氧化物的液相反应产生的.高硫酸盐阶段发生在低湿、高温条件,主要来自于大气光化学反应的贡献.该研究结果为西安及周边地区的空气污染治理决策提供重要的理论依据.  相似文献   
3.
The usefulness of water quality indices, as the indicators of water pollution, for assessment of spatial-temporal changes and classification of river water qualities was verified. Four water quality indices were investigated: WQI (considering 18 water quality parameters), WQI(min) and WQI(m) (considering five water quality parameters: temperature, pH, DO, EC and TSS) and WQI(DO) (considering a single parameter, DO). The water quality indices WQI(min), WQI(m) and WQI(DO) could be of particular interest for the developing countries because of the minimum analytical cost involved. As a case study, water quality indices were used to evaluate spatial and temporal changes of the water quality in the Bagmati river basin (Nepal) for the study period 1999-2003. The results allowed us to determine the serious negative effects of the city urban activity on the river water quality. In the studied section of the river, the water quality index (WQI) was 71 units (classified as good) at the entry station and 47.6 units (classified as bad) at the outlet station. For the studied period, a significant decrease in water quality (mean WQI decrease = 11.6%, p = 0.042) was observed in the rural areas. A comparative analysis revealed that the urban water quality was significantly bad as compared with rural. The analysis enabled to classify the water quality stations into three groups: good water quality, medium water quality and bad water quality. WQI(min) resulted in overestimation of the water quality but with similar trend as with WQI and is useful for the periodic routine monitoring program. The correlation of WQI with WQI(min) and DO resulted two new indices WQI(m) and WQI(DO), respectively. The classification of waters based on WQI(m) and WQI(DO) coincided in 90 and 93% of the samples, respectively.  相似文献   
4.
The study presents the assessment of variation of water qualities, classification of monitoring networks and detection of pollution sources along the Bagmati River and its tributaries in the Kathmandu valley of Nepal. Seventeen stations, monitored for 23 physical and chemical parameters in pre-monsoon, monsoon, post-monsoon and winter seasons, during the period 1999-2003, were selected for the purpose of this study. The study revealed that the upstream river water qualities in the rural areas were increasingly affected from human sewage and chemical fertilizers. In downstream urban areas, the river was heavily polluted with untreated municipal sewage. The contribution of industries to pollute the river was minimal. The higher ratio of COD to BOD (3.74 in the rural and 2.06 in the urban) confirmed the increased industrial activities in the rural areas. An increasing trend of nitrate was found in the rural areas. In the urban areas, increasing trend of phosphorus was detected. The water quality measurement in the study period showed that DO was below 4 mg/l and BOD, COD, TIN, TP and TSS above 39.1, 59.2, 10.1, 0.84 and 199 mg/l, respectively, in the urban areas. In the rural areas, DO was above 6.2 mg/l and BOD, COD, TIN, TP and TSS below 15.9, 31, 5.24, 0.41 and 134.5 mg/l, respectively. The analysis for data from 1988 to 2003 at a key station in the river revealed that BOD was increasing at a rate of 1.8 mg/l in the Bagmati River. A comparative study for the water quality variables in the urban areas showed that the main river and its tributaries were equally polluted. The other comparison showed the urban water qualities were significantly poor as compared with rural. The cluster analysis detected three distinct monitoring groups: (1) low water pollution region, (2) medium water pollution region, (3) heavy water pollution region. For rapid assessment of water qualities using the representative sites could serve to optimize cost and time without loosing any significance of the outcome. The factor analysis revealed distinct groups of sources and pollutions (organics, nutrients, solutes and physicochemical).  相似文献   
5.
The review discusses six major public domain water quality models currently available for rivers and streams. These major models, which differ greatly in terms of processes they represent, data inputs requirements, assumptions, modeling capability, their strengths and weaknesses, could yield useful results if appropriately selected for the desired purposes. The public domain models, which are most suitable for simulating dissolved oxygen along rivers and streams, chosen in this review are simulation catchment (SIMCAT), temporal overall model for catchments (TOMCAT), QUAL2Kw, QUAL2EU, water quality analysis simulation program (WASP7), and quality simulation along rivers (QUASAR). Each of these models is described based on a consistent set of criteria-conceptualization, processes, input data, model capability, limitations, model strengths, and its application. The results revealed that SIMCAT and TOMCAT are over-simplistic but useful to quickly assess impact of point sources. The QUAL2Kw has provision for conversion of algal death to carbonaceous biochemical oxygen demand (CBOD) and thus more appropriate than QUAL2EU, where macrophytes play an important interaction. The extensive requirement of data in WASP7 and QUASAR is difficult to justify the time and costs required to set up these complex models. Thus, a single model could not serve all wide range of functionalities required. The choice of a model depends upon availability of time, financial cost and a specific application. This review may help to choose appropriate model for a particular water quality problem.  相似文献   
6.
This study examined the spatial-temporal variations and factors influencing the management of groundwater along a section of the Bagmati river corridor in the Kathmandu valley (Nepal). The results showed that rural areas were less polluted than urban areas. In urban areas, the biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 8.41 to 29.74 mg/L, 6.7 to 128.96 mg/L and 0.06 to 1.5 mg/L, respectively. In rural areas, the BOD, TN and TP concentrations ranged from 0.78 to 18.25 mg/L, 4.8 to 11.56 mg/L and 0.07 to 0.65 mg/L, respectively. The level of organics was higher in the pre-monsoon season, while the level of nutrients was higher in post-monsoon season. A comparison of the groundwater and surface water in the upstream rural areas revealed that the TP concentration was higher in the groundwater than in the surface water, which was attributed to the sorption of phosphorus on iron, aluminum or calcium compounds contained in the surface water, which depends upon the temperature, pH and dissolved oxygen. In urban areas, a few wells were found at groundwater levels lower than the corresponding surface water levels and were subjected to a high risk of pollution. Overall, these findings reinforce the notion that the management of surface and ground waters in an integrated approach is essential for attaining sustainable development of groundwater systems.  相似文献   
7.
A stream water quality model, QUAL2Kw, was calibrated and validated for the river Bagmati of Nepal. The model represented the field data quite well with some exceptions. The influences of various water quality management strategies have on DO concentrations were examined considering: (i) pollution loads modification; (ii) flow augmentation; (iii) local oxygenation. The study showed the local oxygenation is effective in raising DO levels. The combination of wastewater modification, flow augmentation and local oxygenation is necessary to ensure minimum DO concentrations. This reasonable modeling guarantees the use of QUAL2Kw for future river water quality policy options.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号