首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   1篇
综合类   2篇
基础理论   3篇
污染及防治   4篇
评价与监测   2篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k 1, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.  相似文献   
2.
Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper.  相似文献   
3.
In the troposphere anthropogenic aerosol emissions are increasing in recent decades, which can influence the earth's climate. The present study addresses the characterization of aerosols and their radiative impacts over urban (Hyderabad) and rural (Srisailam) environments by using aerosol optical depth (AOD) measurements from MICROTOPS-II sunphotometer. AOD measurements over the urban site showed high values compared to the rural site. Over the urban environment aerosol forcing at the surface is as high as -42 W m(-2) and at the top of the atmosphere (TOA) is +10 W m(-2) whereas at the rural environment aerosol forcing at the surface has been observed to be -11 W m(-2) and at TOA it is observed to be +5.7 W m(-2). The difference between TOA and the surface forcing over the urban environment is +32 W m(-2) and over the rural environment is +5.3 W m(-2), which shows the absorption capacity of the respective atmospheres.  相似文献   
4.
Atmospheric aerosols are an important contributing factor to turbidity in urban areas besides having impact on health. Aerosol characteristics show a high degree of variability in space and time as anthropogenic share of total aerosol loading is quite substantial and is essential to monitor the aerosol features over long time scales. In the present study extensive observations of columnar aerosol optical depth (AOD), total columnar ozone (TCO) and precipitable water content (PWC) have been carried over a tropical urban city of Hyderabad, India. Significant variations of AOD have been observed during course of the day with low values of AOD during morning and evening hours and high values during afternoon hours. Spectral variation of AOD exhibits high AOD at smaller wavelengths and vice versa except a slight enhancement in AOD at 500 nm. Anomalies in AOD, particulate matter and black carbon concentrations have been observed during May, 2003. Back trajectory analysis of air mass during these episodes suggested variation in air mass trajectories. Analysis of the results suggests that air trajectories from land region north of study area cause high loading of atmospheric aerosols. The results are discussed in the paper.  相似文献   
5.
We describe the development and validation of a portable system comprising an air sampler coupled to an automated flow injection analysis device. The system is able to monitor airborne concentrations of subtilisin-type enzymes in the workplace atmosphere on a continuous basis. Sampling is in two stages: using a sampling head that is designed to mimic human respiration at approx. 1 m s(-1) at a sampling rate of 600 l min(-1). In the second stage, the captured particles are deposited by impaction from the air stream onto the inner surface of a cyclone that is continuously washed with a jet of buffer solution. Deposited particles are then washed into a reservoir from which samples are taken every 5-6 min and injected automatically into a continuous flow injection analysis system. Proteolytic enzyme in the sample passes through a bioreactor maintained at about 40 degrees C. This contains a cellulose solid phase matrix on which is covalently immobilised Texas Red-labelled gelatin as substrate. The passing enzyme partially digests the substrate releasing fluorophore that is detected down stream in a flow cell coupled to a fluorimeter. The system is calibrated using enzyme standards and the intensity of the resulting peaks from the ex-air samples is converted to airborne concentrations using a mathematical model programmed into a PC. The system has a limit of detection of 4.8 ng m(-3) and a dynamic range of 5-60 ng m(-3). The within assay precision (RSD) is 6.3-9.6% over this range. The within batch precision is 20.3% at 20 ng m(-3) and the corresponding between batch value is 19.5%. The system has been run for periods up to 8 h in the laboratory and for up to 4 h at a factory site and the values obtained compared with time-averaged values obtained from a conventional Galley sampler and in-house analysis when reasonable agreement of the results was observed. The stability of the system over 21 days of continuous use with standards injected periodically was studied. Linearity was observed for all the standard plots throughout. At the end of 21 days, after a total exposure equivalent to 2395 ng ml(-1) of Savinase, the signal due to the 5.0 ng ml(-1) standard was still easily detectable.  相似文献   
6.
7.
Aerosols reduce the surface reaching solar flux by scattering the incoming solar radiation out to space. Various model studies on climate change suggest that surface cooling induced by aerosol scattering is the largest source of uncertainty in predicting the future climate. In the present study measurements of aerosol optical depth (AOD) and its direct radiative forcing efficiency has been presented over a typical tropical urban environment namely Hyderabad during December, 2003. Measurements of AOD have been carried out using MICROTOPS-II sunphotometer, black carbon aerosol mass concentration using Aethalometer, total aerosol mass concentration using channel Quartz Crystal Microbalance (QCM) Impactor Particle analyser and direct normal solar irradiance using Multifilter Rotating Shadow Band Radiometer (MFRSR). Diurnal variation of AOD showed high values during afternoon hours. The fraction of BC estimated to be approximately 9% in the total aerosol mass concentration over the study area. Results of the study suggest -62.5 Wm(-2) reduction in the ground reaching shortwave flux for every 0.1 increase in aerosol optical depth. The results have been discussed in the paper.  相似文献   
8.
Lipid oxidation is a process, which results in rancidity and deterioration of fats posing a major problem in food industry. Antioxidants are of interest, which presumably protects food from oxidative deterioration during storage. The glutathione antioxidant system of different meat samples were noticed for six months under refrigerated storage. Activity of glutathione reductase (GR) and level of glutathione (GSH) decreased during six months storage in all the four meat samples. The glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) activity increased gradually during storage. It seems possible that glutathione antioxidant system protected the meat samples against quality loss during its storage.  相似文献   
9.
Environmental Chemistry Letters - Heavy metals and dyes are major pollutants that pose potential threat to the health of humans and ecosystems. Various technologies are available to remediate such...  相似文献   
10.
The diversity and distribution pattern of benthic macroinvertebrates in two backwaters viz., Veli and Kadinamkulam of Kerala were assessed using diversity indices. The samples were collected once in three months for a period of two years from six sampling sites (K1, K2, K3, V1, V2 and V3) and community variations were analyzed. Overall, 24 families were identified represented by mollusca, annelida and arthropoda (crustaceans and insects). Among this, dominant taxon was Mytilidae of molluscan family and site-wise dominance was maximum in sites V1 and V2. Richness and abundance were highest in site V2 and lowest in site K2. Diversity index ranged from 0.27 (K2) to 2.33 (V1). The diversity and distribution patterns of certain species were clearly related to water quality as evident from the present study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号