首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10695篇
  免费   8篇
  国内免费   28篇
安全科学   11篇
废物处理   817篇
环保管理   1349篇
综合类   1031篇
基础理论   3279篇
污染及防治   2110篇
评价与监测   1189篇
社会与环境   943篇
灾害及防治   2篇
  2023年   34篇
  2022年   75篇
  2021年   61篇
  2020年   12篇
  2019年   27篇
  2018年   1488篇
  2017年   1392篇
  2016年   1231篇
  2015年   148篇
  2014年   62篇
  2013年   153篇
  2012年   499篇
  2011年   1397篇
  2010年   732篇
  2009年   642篇
  2008年   936篇
  2007年   1266篇
  2006年   44篇
  2005年   52篇
  2004年   63篇
  2003年   90篇
  2002年   117篇
  2001年   31篇
  2000年   19篇
  1999年   12篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   13篇
  1983年   9篇
  1982年   5篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

  相似文献   
2.
Environment, Development and Sustainability - COVID-19 has affected the global economy like no other crisis in the history of mankind. It forced worldwide lockdown and economic shutdown to the...  相似文献   
3.

Boro rice, an emerging low-risk crop variety of rice, cultivated using residual or stored water after Kharif season. To enhance the quality and production of rice, potassium (K) and phosphorus (P) are the common constituents of agricultural fertilizers. However, excess application of fertilizers causes leaching of nutrients and contaminates the groundwater system. Therefore, assessment and optimization of fertilizer dose are needed for better management of fertilizers. Towards this, the present study determines the path, persistence, and mobility of K and P under the Boro rice cropping system. The experimental site consisted of four plots having Boro rice with four different fertilizer doses of nitrogen (N), P, K viz. 100%, 75%, 50%, and 25% of the recommended dose. Disturbed soil samples were analysed for K and P from pre-sown land to tillering stage at 0–5, 5–10, 10–15, 15–30, 30–45, and 45–60 cm depths. Simultaneously, K and available P were also simulated in the subsurface soil layers through the HYDRUS-1D model. The statistical comparisons were made with RMSER, E, and PBIAS between the modelled values and laboratory-measured values. Although, the results showed that all the treatments considered had agreeable simulations for both K and P, the K simulations were found to be better as compared to P simulations except for 25% where P simulations outperformed K. The simulated concentration at all doses was found most appropriate when measured for the subsurface layers (up to 45 cm), while showed an underestimation in the bottom layers (45–60 cm) of soil.

  相似文献   
4.
Microplastics have been found in large quantities in agricultural soil and now become a major global issue. Different types of microplastic have adverse effects on agricultural soil. The most widely used method for the extraction of microplastics in agricultural soil is the density floatation method by using saturated NaCl solution. This method includes the pre-digestion of soil samples with H2O2 to remove all the organic matter present in the soil. Different types of microplastic particles were extracted and identified by using ATR-FTIR viz polypropylene, polybutylene tetrapthalate, polyethylene, polystyrene, and polyethylene tetrapthalate. The crystalline nature of extracted microplastic was checked by employing XRD analytical technique. Floatation with higher density saturated sodium chloride (NaCl) solution recovered approximately 80% MPs from soil. Floatation methods were found to be effective for extracting microplastics from soils.  相似文献   
5.
Environmental Science and Pollution Research - Chenopodium album and C. murale are cosmopolitan, annual weed species of notable economic importance. Their unique biological features, including high...  相似文献   
6.
The concern related to the drinking of reverse osmosis (RO) water containing low levels of minerals is growing day by day. This study involves the analysis of water samples from various drinking water sources in a rural site, Mirchpur village, an Indus Valley civilization site (grid location: 29° 18′ 42.3″ N, 76° 10′ 33.0″ E) of Hisar, India, along with the health survey of human subjects. The hydrochemistry of water collected from hand pumps, river canals, tube wells, submersibles, and the RO systems installed in various homes was explored for pH, EC, TH, TDS, turbidity, cations (Na+, Ca2+, Mg2+), anions (CO32−, HCO3, Cl, SO42−, NO3, F), and elements (Fe, Pb, Se) employing the ion chromatography, flame photometry, and ICP-AES techniques. Lead (Pb) and Selenium (Se) were detected in trace amounts (0.30–2.6 μg L−1; 0.10–4.1 μg L−1, respectively) in all the samples, including the samples collected from RO purifiers, but Iron (Fe) was not detected in RO samples even in trace amounts. The F-levels in hand pump water (HPW) and submersible water (SW) (1.9  and 1.7 mg L−1, respectively) and TDS levels in SW (3048 mg L−1) were found to be above WHO and BIS safe limits. TDS levels in the river canal (900 mg L−1), tube well (1104 mg L−1), hand pump (1170 mg L−1), and submersible samples (3048 mg L−1) were found significantly higher as compared to the RO personal water (ROPW; 216 mg L−1) and RO supply water (ROSW; 90 mg L−1). The collected epidemiological data reveals that 21%, 19%, 13%, and 12% of natives reported skin, kidney, hair fall, liver, and stomach issues, respectively, suspecting the crucial role of high TDS and fluoride levels in the area. This study also provides a comparison between the quality of RO and the direct supply water, along with correlation matrices for different parameters, which gives a rationale for the limitations of drinking direct supply water without any purification and RO water containing low mineral content.  相似文献   
7.
Waste accumulation is a grave concern and becoming a transboundary challenge for environment. During Covid-19 pandemic, diverse type of waste were collected due to different practices employed in order to fight back the transmission rate of the virus. Covid-19 was proved to be capricious catastrophe of this 20th century and even not completely eradicated from the world. The havoc created by this imperceptible quick witted, pleomorphic deadly virus can't be ignored. Though a number of vaccines have been developed by the scientists but there is a fear of getting this virus again in our life. Medical studies prove that immunity drinks will help to reduce its reoccurrences. Coconut water is widely used among all drinks available globally. Its massive consumption created an incalculable pile of green coconut shells around the different corners of the world. This practice generating enormous problem of space acquisition for the environment. Both the environment and public health will benefit from an evaluation of quantity of coconut waste that is being thrown and its potential to generate value added products. With this context, present article has been planned to study different aspects like, coconut waste generation, its biological properties and environmental hazards associated with its accumulation. Additionally, this review illustrates, green technologies for production of different value added products from coconut waste.  相似文献   
8.
Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different aspects.  相似文献   
9.
The purpose of this paper is to study the impacts of the vagueness about the transfer of the harvest right on the use of a natural resource. We develop one-period non-cooperative game frameworks to examine whether the choice of the resource owner to be hazy about the transmission of the harvest contract is optimal. In the perfect information situation, we show that it is optimal for the resource owner to forbid the transfer of the harvest right instead of being hazy about it when the transfer fees are lesser than the collected net punishment fines of the monitoring costs even though the resource would be inefficiently used. In particular, we find in this case that the government’s announcement to forbid the transfer of the right should be public. We further show that there are subgame Nash equilibria in the perfect information context and a unique Nash equilibrium in the imperfect information setting. Specifically, we show that, when the transfer fees are greater or equal to the (net) punishment fines, there is a Nash equilibrium both in perfect and imperfect information situations, precisely when the owner chooses to allow the transfer of harvest title and the resource harvester transfers it.  相似文献   
10.
Different scenarios of recharge and discharge were assessed for sustainable management of groundwater in Quaternary aquifer east of Nile Delta. MODFLOW was utilized to investigate the effect of land use change and damming construction in the upstream of the Nile River on the current and short-term groundwater management strategies. The interpretive transient simulation was performed between 2004 and 2016 after steady-state calibration in 2004, and transient state from 2004 to 2013 with different irrigation recharges associated with land use change in this period. Sensitivity analysis was performed for hydraulic conductivities, recharge, and conductance parameters. The predictive transient simulation was run till 2023 under three scenarios of increasing pumping rates by 15, 30, and 50% for agriculture expansion and specified head reduction of Port Said Canal by 0.2, 0.4, and 0.6 m associated with the reduction of Nile water levels after Grand Ethiopian Residence Dam, GERD operation in 2017. Results from the in- and out-flow budgets showed that groundwater aquifer is stable at the current rate of pumping till 2023. Groundwater heads decreased by 0.2 and 0.42 m in the southern section, and a slight increase in the northern part was noticed for the first and second scenarios, respectively. When additional pumping stress is applied (50% increase), groundwater head dropped by 0.66 m, and the storage is no longer able to maintain the aquifer capacity after 2020 (worst-case scenario).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号