首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  评价与监测   6篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
A study was conducted to test the effects of soil amendments on the bioavailability of heavy metals in a zinc mine tailings containing soil to plants, using the Indian mustard plant (Brassica juncea) as a test organism. Zinc mine tailing containing soil was amended with humus soil (HS) and phosphatic clay (PC). The zinc mine tailing containing soil (ZMTS) was characterized for heavy metals. It was mixed with PC and HS, and four mixtures were prepared. The first mixture contained ZMTS, and served as a control. The second mixture contained ZMTS and PC in the ratio of 1:1 (w/w). The third mixture contained ZMTS and HS in the ratio of 1:1(w/w). The fourth mixture containing ZMTS, PC and HS in the ratio of (2:1:1) (w/w). A slight increase in the bioavailability of Pb, Cu, Zn and Mn was noticed with increase in the incubation time from 14 to 42 days. The bioavailability of Pb, Cu, Zn and Mn from ZMTS alone in Brassica plant was in the range of 94-99% up to 42 days. Addition of PC and HS to the ZMTS soil reduced the bioavailabilities of Pb by (15%), of Cu by (20%), of Zn by (20%) and of Mn by (25%) in the mustard plant. The data showed that PC in the presence of HS had a high affinity for the heavy metals in the order of Pb, Cu, Zn and Mn.  相似文献
2.
Batch experiments were conducted on ground water samples collected from a site contaminated with Cr(VI) to evaluate the redox potential of zero-valent iron (Fe0) nanoparticles for remediation of Cr(VI)-contaminated ground water. For this, various samples of contaminated ground water were allowed to react with various loadings of Fe0 nanoparticles for a reaction period of 60 min. Data showed 100% reduction of Cr(VI) in all the contaminated ground water samples after treatment with 0.20 gL−1 of Fe0 nanoparticles. An increase in the reduction of Cr(VI) from 45% to 100% was noticed with the increase in the loading of Fe0 nanoparticles from 0.05 to 0.20 gL−1. Reaction kinetics of Cr(VI) reduction showed pseudo first-order kinetics with rate constant in the range of 1.1 × 10−3 to 3.9 × 10−3 min−1. This work demonstrates the potential utility of Fe0 nanoparticles in treatment and remediation of Cr(VI)-contaminated water source.  相似文献
3.
Gomti river receives industrial as well as domestic wastes from various drains of Lucknow city. In the process the water and sediment of the river Gomti get contaminated with heavy metals and other pollutants. In the present study, impacts of domestic/industrial wastes on the water and sediment chemistry of river Gomti with special reference to heavy metals have been investigated in different seasons (summer, winter and rainy). For this, seven sampling sites: Gaughat, Mohan Meakin, Martyrs Memorial, Hanuman Setu, Nishatganj bridge, Pipraghat and Malhaur, in the river Gomti in Lucknow region were identified and samples of water and sediments were collected in all the three seasons. In the collected water and sediment samples, six metals (Cd, Cr, Cu, Ni, Pb, and Zn) were analyzed on ICP-AES (Inductively coupled plasma emission spectroscopy) Labtam Plasmalab 8440. High concentrations of all the metals were noticed in water and sediment in rainy season compared to summer and winter. Because in rainy season runoff from open contaminated sites, agricultural field and industries, directly comes into the river without any treatment. In both the cases, the concentration of zinc was maximum (0.091 g/ml in water and 182.13 g/g in sediment) and the concentration of cadmium (0.001 g/ml in water and 17.26 g/g in sediment) was minimum. Higher concentration of metal in water and sediment during rainy season could be due to the industrial/agricultural/domestic runoff coming into the river.  相似文献
4.
Effect of various concentrations of humic acid (0.2 to 1%) on thebioavailability of -HCH in vegetative clones of theaquatic fern Marsilea minuta was studied in a staticexperimental bioassay system on different photoperiods. Additionof humic acid showed the reduction in the bioavailability of-HCH in all the photoperiods (72 hr light to 144 hrlight) at the interval of 16 hr light (L) and 8 hr dark (D) inboth aerial and submerged portion as compared to controlindicating its protective role in toxicity.  相似文献
5.
The sources of toxic xenobiotics and different factors such as ecological diversity, differences in comparative anatomy, physiology and biochemistry, food chain variation, interrelationship within species and life span, etc., are considered during risk assessment of pollutants, and their impact on aquatic ecotoxicology is identified. A fugacity and multimedia compartment model is suggested, based on toxicodynamic (toxicity of the chemical) and toxicokinetic (metabolism of the chemical) considerations to predict and screen the behaviour of pollutants quantitatively in the aquatic environment. The significance of the risk analysis approach in anticipatory actions and regulation of pollution levels is discussed.  相似文献
6.
Cellulose nitrate membrane filter was used for the preconcentration-separation of Cu, Co, Cd, Pb and Cr ions. The analyte ions were collected on the membrane filter by the aid of carmine. Then membrane filter was dissolved by using nitric acid. The levels of the analytes in the final solutions were determined by flame atomic absorption spectrometry (FAAS). The analytical parameters including pH, amounts of carmine, sample volumes etc. have been optimized. No influences have been observed from the matrix ions. The detection limits for analytes were in the range of 0.08 μg/l-0.93 μg/l. The validation of the procedure was checked by the analysis of standard reference sediment (GBW 07309). The present method has been successfully applied for the FAAS determinations of analyte ions in real samples including black tea and magnesium salts.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号