首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12324篇
  免费   189篇
  国内免费   417篇
安全科学   366篇
废物处理   539篇
环保管理   1506篇
综合类   3198篇
基础理论   2706篇
环境理论   5篇
污染及防治   3176篇
评价与监测   724篇
社会与环境   605篇
灾害及防治   105篇
  2022年   149篇
  2021年   165篇
  2020年   125篇
  2019年   119篇
  2018年   184篇
  2017年   194篇
  2016年   274篇
  2015年   222篇
  2014年   327篇
  2013年   893篇
  2012年   393篇
  2011年   498篇
  2010年   427篇
  2009年   478篇
  2008年   502篇
  2007年   571篇
  2006年   483篇
  2005年   385篇
  2004年   388篇
  2003年   395篇
  2002年   353篇
  2001年   464篇
  2000年   346篇
  1999年   229篇
  1998年   128篇
  1997年   135篇
  1996年   118篇
  1995年   163篇
  1994年   164篇
  1993年   133篇
  1992年   134篇
  1991年   149篇
  1990年   121篇
  1989年   128篇
  1988年   135篇
  1987年   114篇
  1986年   83篇
  1985年   99篇
  1984年   124篇
  1983年   125篇
  1982年   123篇
  1981年   97篇
  1980年   93篇
  1979年   106篇
  1978年   89篇
  1977年   84篇
  1976年   78篇
  1975年   90篇
  1974年   101篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 141 毫秒
1.
Environmental Science and Pollution Research - Hydrothermal liquefaction (HTL) of biomass used HTL reaction under high temperature and pressure to produce bio-oil. This technology is considered as...  相似文献   
2.
Environmental Science and Pollution Research - Due to the merits of their high adsorption and convenient separation, magnetic graphene-based composites have become a promising adsorbent in terms of...  相似文献   
3.
Environmental Science and Pollution Research - A current environmental problem is the uncontrolled use of various pesticides that are harmful to the environment and public health. The herbicide...  相似文献   
4.
5.
利用新型开顶式气室(OTC)开展CO_2浓度升高和大气增温试验,分别为模拟增温2.0℃,模拟增温2.0℃且CO_2浓度增加到650μmol·mol-1,对照CO_2浓度约410μmol·mol-1,对马铃薯叶片、叶柄和茎等地上生物量、根和块茎等地下生物量积累过程及其特征参数的协同影响研究,分析气候变化对马铃薯产量形成和品质的影响,为半干旱区适应气候变化提供科学依据。结果表明,模拟增温2.0℃且CO_2浓度增加到650μmol·mol-1,马铃薯茎和地上部生物量积累显著比对照高35.8%—53.4%;生物量较单独增温处理显著增加24.4%—34.4%。马铃薯茎和地上部生物量最大积累速度出现时间推后,最大积累速度加快,生物量快速积累间隔日数较单独增温处理和对照均延长。大气增温加CO_2浓度升高复合处理试验中,马铃薯块茎鲜质量积累在块茎膨大中期略低于单独增温处理外,在其余积累时段均高于单独增温处理以及对照。马铃薯成熟期块茎在复合处理下,鲜质量显著高于单独增温处理24.1%;高于对照3.4%。马铃薯块茎鲜质量最大积累速度出现时间也推后,快速积累期间隔日数较单独增温处理延长,但与对照接近。增温与CO_2复合处理使马铃薯叶片净光合速率提高,水分利用效率提高,干物重积累增多,经济产量增加。  相似文献   
6.
• Aerosol transmission is an indispensable route of COVID-19 spread. • Different outbreak sites have different epidemiologic feature. • SRAS-CoV-2 can exist for a long time in aerosol. • SRAS-CoV-2 RNA can be detected in aerosol in diverse places. • Some environmental factors can impact SARS-CoV-2 transportation in aerosol. Patients with COVID-19 have revealed a massive outbreak around the world, leading to widespread concerns in global scope. Figuring out the transmission route of COVID-19 is necessary to control further spread. We analyzed the data of 43 patients in Baodi Department Store (China) to supplement the transmission route and epidemiological characteristics of COVID-19 in a cluster outbreak. Incubation median was estimated to endure 5.95 days (2–13 days). Almost 76.3% of patients sought medical attention immediately upon illness onset. The median period of illness onset to hospitalization and confirmation were 3.96 days (0–14) and 5.58 days (1–21), respectively. Patients with different cluster case could demonstrate unique epidemiological characteristics due to the particularity of outbreak sites. SRAS-CoV-2 can be released into the surrounding air through patient’s respiratory tract activities, and can exist for a long time for long-distance transportation. SRAS-CoV-2 RNA can be detected in aerosol in different sites, including isolation ward, general ward, outdoor, toilet, hallway, and crowded public area. Environmental factors influencing were analyzed and indicated that the SARS-CoV-2 transportation in aerosol was dependent on temperature, air humidity, ventilation rate and inactivating chemicals (ozone) content. As for the infection route of case numbers 2 to 6, 10, 13, 16, 17, 18, 20 and 23, we believe that aerosol transmission played a significant role in analyzing their exposure history and environmental conditions in Baodi Department Store. Aerosol transmission could occur in some cluster cases when the environmental factors are suitable, and it is an indispensable route of COVID-19 spread.  相似文献   
7.
Sectorial approach for monitoring heavy metal pollution in rivers has failed to report realistic pollution status and associated ecological and human health risks. The increasing spread of heavy metals from different sources and emerging risks to human and environmental health call for reexamining heavy metal pollution monitoring frameworks. Also, the sources, spread, and load of heavy metals in the environment have changed significantly over time, requiring consequent modification in the monitoring frameworks. Therefore, studies on heavy metal monitoring in rivers conducted in the last decade were evaluated for experimental designs, research frameworks, and data presentations. Most studies (∼99%) (i) lacked inclusiveness of all environmental compartments; (ii) focused on “one pollutant – one/two compartment” or sometimes “one pollutant – one compartment – one effect” approach; and (iii) remained “data-rich but information poor.” An ecological approach with integrative system thinking is proposed to develop a holistic approach for monitoring river pollution. It is visualized that heavy metal monitoring, risk analyses, and water management must incorporate tracking pollutants in different environmental compartments of a river (water, sediment, and floodplain/bank soil) and consider correlating it with riverbank land use. The systems-based pollution monitoring and assessment studies will reveal the critical factors that drive heavy metals pollutant movement in ecosystems and associated potential risks to the environment, wildlife, and humans. Also, water quality and pollution indexing tools would help better communicate complex pollution data and associated risks among all stakeholders. Therefore, integrating systems approaches in scientific- and policy-based tools would help sustainably manage the health of rivers, wildlife, and humans.  相似文献   
8.

Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.

  相似文献   
9.
Regional Environmental Change - Research that projects biophysical changes under climate change is more advanced than research that projects socio-economic changes. There is a need in adaptation...  相似文献   
10.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号