排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
不同共代谢基质下厌氧生物降解间苯二酚的研究 总被引:1,自引:0,他引:1
分别用蔗糖、葡萄糖、丁酸盐和乙醇作为驯化好的厌氧污泥的共代谢基质,在厌氧序批式反应器(ASBR)中对间苯二酚的降解进行研究。结果表明:共代谢基质SCOD浓度在500~2000mg/L时,间苯二酚的降解速率很高;试验回归结果表明反应均符合一级动力学方程;反应速率常数大小依次为k丁酸盐>k蔗糖>k葡萄糖>k乙醇;当两种共代谢基质按比例1:1(SCOD)混合投加后,反应速率常数大小依次为k葡萄糖+丁酸盐>k乙醇+丁酸盐>k葡萄糖+乙醇,其中葡萄糖和丁酸盐的混合基质降解速率最高。 相似文献
2.
系统探讨了新乡市道路灰尘中PAHs的含量、分布,并解析了道路灰尘中PAHs的来源,并对新乡市道路灰尘中PAHs进行了生态风险评价,结果表明,新乡市道路灰尘中美国EPA优先监测的16种PAHs的检出率为100%,16种PAHs总量在42.1—8720 ng·g-1之间,平均含量为3223 ng·g-1.与国内外其它城市相比,新乡市道路灰尘中PAHs含量较低,与新乡市的经济发达状况呈现正相关.新乡市道路灰尘中PAHs的组成以4环PAHs为主,占PAHs总量的40.18%.通过多特征比值,对新乡市道路灰尘中PAHs来源进行定性判断,表明其主要来源于石油及其精炼产品的不完全燃烧和木柴、煤的燃烧;进一步通过因子分析/多元线性回归分析表明,新乡市道路灰尘中PAHs主要来源于汽油车、煤和木柴的燃烧以及柴油车的排放,其平均贡献率分别为33.5%、50.6%和15.9%.各种PAHs组分的单因子指数评价结果表明,新乡市道路灰尘已经受到PAHs的较严重的污染.所有样品的综合污染指数表明,新乡市道路中PAHs的综合污染指数的范围在0.09—9.95,平均值为3.38,充分表明新乡市道路灰尘已经受到严重的PAHs污染,具有较高的生态风险. 相似文献
3.
4.
5.
应用Fenton高级氧化技术降解水溶液中抗生素磺胺间甲氧嘧啶钠(SMMS),系统探讨了起始pH、CSMMS、CFe2+、CH2O2和温度等因素对SMMS降解效果的影响。结果表明:CSMMS=4.53 mg/L,pH=4.0,CH2O2=0.49 mmol/L,CFe2+=19.51μmol/L,T=25℃为最佳反应条件。在最佳条件下,87.4%的SMMS可以在120 min内降解。反应动力学研究表明Fenton氧化降解SMMS分为两个阶段,快速反应阶段和慢速反应阶段,并建立了两阶段动力学模型,模型拟合结果较好。研究结果为含有SMMS的污废水处理提供了基础数据和科学参考。 相似文献
6.
7.
研究了Mn2+协同Fe3+-EDTA络合体催化类Fenton反应,在中性pH条件下对水中新兴污染物卡马西平的降解情况.考察了Mn2+∶Fe3+、EDTA∶Fe3+和H2O2∶Fe3+的物质的量比率、Fe3+浓度和初始pH等关键因素对卡马西平降解效果的影响.结果表明,共存Mn2+能够显著增强Fe3+-EDTA络合体催化类Fenton反应体系的氧化能力.在0.1 mmol·L-1Fe3+、EDTA∶Fe3+为2∶1、Mn2+∶Fe3+为1∶1、H2O2∶Fe3+为150∶1和pH 7.0的条件下,经过20 min反应时间,卡马西平的降解率能够达到100%,表观降解速率常数达到0.6374 min-1.其增效机理是通过Mn2+-EDTA与H2O2反应促进O2·-的产生,进而加速还原Fe3+-EDTA至Fe2+-EDTA,间接提高HO·的产生速率.研究结果能够为水中卡马西平的有效去除提供参考. 相似文献
8.
9.
研究了循环式活性污泥法中厌氧生物选择区的停留时间、进水有机物浓度和系统中泥龄、曝气时间等运行参数对选择区内厌氧释磷以及有机物的吸收贮存的影响。结果表明,选择区停留时间lh,系统泥龄5d,曝气2h,进水有机物浓度COD/TP=60--70,选择器中释磷效果及微生物的吸附性能最优,可去除进水中78%的COD。而且污泥沉降性能良好,试验运行过程中,SVI一直保持在30--40ml/g左右。 相似文献
10.
研究了酸溶轧钢废钢渣制取铁盐净化剂的工艺条件。结果表明,废渣在16%H2SO4 ̄11.1%HCl混倒中加热加流1h,铁的溶出率达92.4%,废渣与碳粉按5:1混合,于1000℃灼烧1h,而后在16%H2SO4中加热回流1h,铁的溶出率为73.6%,此净水剂在投加量为1‰时,对实际水样的浊度和COD去除率分别为89.5%和71%,净水效果优于硫酸亚铁。 相似文献