首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  国内免费   1篇
废物处理   2篇
环保管理   7篇
综合类   3篇
基础理论   4篇
污染及防治   18篇
评价与监测   3篇
社会与环境   4篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有41条查询结果,搜索用时 250 毫秒
1.

Background

In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

Review

This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

Conclusion

Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.  相似文献   
2.
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L–L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.  相似文献   
3.
4.
Malaysia is in dire need of alternatives to landfilling for solid waste management. Recently, landfills have faced the problems of overfilling, overflowing of leachates leading to pollution of water resources, and uncontrolled dust emissions adversely affecting the local environment. With the rising cost of urbanization coupled with the high rate of waste generation, one possible method of waste treatment that is receiving particular attention by the government is incineration. Incineration of solid waste is rather new in Malaysia, with limited usage in handling small sources of waste generation such as the municipal solid waste (MSW) of resort islands; however, its potential in ameliorating the problems associated with solid waste treatment may make it an attractive alternative to landfill. This article presents the results of test runs conducted to investigate the performance of a locally designed and manufactured rotary kiln incinerator (RKI). The test runs were conducted using MSW collected from the Shah Alam municipality. The combustion efficiency was analyzed by looking at the temperature profiles and chemical species concentrations. To complement the combustion characteristics measurements, predictions of the air flow in the incinerator during the process were also investigated. The overall performance of the RKI suggests that it is suitable for treating MSW.  相似文献   
5.
Management of urban solid waste: Vermicomposting a sustainable option   总被引:1,自引:0,他引:1  
Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization as well as changes in our life style. Presently most of the waste generated is either disposed of in an open dump in developing countries or in landfills in the developed ones. Landfilling as well as open dumping requires lot of land mass and could also result in several environmental problems. Land application of urban/municipal solid waste (MSW) can be carried out as it is rich in organic matter and contains significant amount of recyclable plant nutrients. The presence of heavy metals and different toxics substances restricts its land use without processing. Vermicomposting of MSW, prior to land application may be a sustainable waste management option, as the vermicast obtained at the end of vermicomposting process is rich in plant nutrients and is devoid of pathogenic organism. Utilization of vermicast produced from urban/municipal solid waste in agriculture will facilitate in growth of countries economy by lowering the consumption of inorganic fertilizer and avoiding land degradation problem. Vermicomposting of urban/MSW can be an excellent practice, as it will be helpful in recycling valuable plant nutrients. This review deals with various aspects of vermicomposting of MSW.  相似文献   
6.
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.  相似文献   
7.
The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m3 s?1, representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size?>?0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5 %. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20 %) compared to group 2 (16.90 to 45.55 %). Two Fisher’s linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1?=??9.405?+?4232.119?×?A???1795.805?×?B?+?281.224?×?C, and F 2?=??2.842?+?2725.137?×?A???1307.688?×?B?+?231.353?×?C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m3 s?1, respectively. The model correctly predicts 88.9 and 100.0 % of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8 % are correctly classified. The model predicts that 31.4 % of the model domain areas consist of high-sand mass composition areas and the remaining 68.6 % comprise low-sand mass composition areas.  相似文献   
8.
Environment, Development and Sustainability - Tropical peatland stores a large amount of carbon (C) and is an important C sink. In Malaysia, about 25% of the peatland area has been converted to oil...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号