首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
环保管理   6篇
基础理论   4篇
污染及防治   5篇
评价与监测   5篇
社会与环境   1篇
  2017年   1篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1976年   1篇
排序方式: 共有21条查询结果,搜索用时 812 毫秒
1.
This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg(-1). Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12,500 mg U kg(-1) (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg(-1)), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation.  相似文献   
2.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   
3.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   
4.
The survival of faecal and total coliform bacteria and Streptococcus faecalis (indicator bacteria) were monitored in experimental plots receiving various amounts of biological or dephosphatation municipal sewage sludge. Biological sludge was applied on coniferous and mixed regenerative forest soils. The results show that except for total coliforms, there was little significant treatment effect on the indicator bacteria numbers in all of the sites. In most cases, there was a significant time effect, indicating that bacterial populations vary over time, according to environmental factors such as temperature, moisture or nutrient level conditions. In total coliform bacteria, populations varied over time but also in function of treatment levels. The present study suggests that even if the standards of Québec (Canada) for sludge application are respected, there may be some risk for bacterial contamination depending on the types of sewage sludge and forest habitat. Although there is only a short-term effect, high slopes can influence the movement of the indicator bacteria and may potentially cause some contamination problems.  相似文献   
5.
Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.  相似文献   
6.
Small GE  Pringle CM  Pyron M  Duff JH 《Ecology》2011,92(2):386-397
Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 microg/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 microg/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates > 10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied approximately 90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems.  相似文献   
7.
Heterotrophic activities were investigated by measuring 3H-leucine incorporation to bacterial protein and 14C-glucose turnover in surface flow constructed wetlands receiving woodwaste leachate. No significant longitudinal variation was found in heterotrophic activities of bacterioplankton. An open wetland, a vegetated wetland, and a fertilized vegetated wetland were used to examine the effects of vegetation and ammonium nitrate amendment. There was not a significant difference in treatment performance among the three wetlands, except for a significant pH increase and more efficient volatile fatty acids removal in the fertilized wetland. The fertilized wetland had the highest leucine incorporation rate and shortest glucose turnover time accompanied by the lowest glucose mineralization percentage, followed by the open wetland, then the vegetated wetland. Planktonic and sedimentary bacteria contributed to the majority of the total heterotrophic activities; epiphytic bacteria played a minor role. Heterotrophic activities were influenced by the availability of nutrient, electron acceptor, and organic substrate.  相似文献   
8.
Muscle tissue was collected from ewes and lambs derived from farms throughout Scotland and sample concentrations of five endocrine disrupting compound groups were determined. Farms of origin were categorised according to geographic region. There were few statistically-significant differences with region or distance from cities. However, the magnitude of the difference between the highest and lowest mean values in ewe muscle from different regions exceeded 30% for 13 of the 15 compounds that were consistently detected in muscle, with animals derived from the industrialised region having the highest mean values for 11 of the 13 compounds. A less marked trend was apparent in the lamb muscle (8 of 13 highest were in the industrialised region). The physiological effects of such small differences in exposure to mixtures of pollutants remain to be determined.  相似文献   
9.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.  相似文献   
10.
Soil concentrations of dioctyl phthalate (DOP) and the alkyl phenols, octyl phenol (OP) and nonyl phenol (NP), after repeated surface applications of sewage sludge to pastures, were investigated. Liquid sludge was applied at a rate of 2.25 tonnes dry matter (DM) per hectare to each of three treated (T) plots on three occasions during the summer and two occasions in the early spring over a period of 2.5 years. Control (C) plots were treated with inorganic fertiliser containing amounts of nitrogen equivalent to those applied to the treated plots. At between 69 and 81 days after the application of sludge, 15 separate soil samples were collected from one half of each of the plots (Experiment 1). Concentrations (microg g(-1)) of DOP were higher (P < 0.001) than those of NP, while those of OP were generally below detectable levels. Mean soil concentrations of DOP were not significantly different in T and C plots [0.233 vs. 0.155 microg g(-1); standard error of the difference (SED) = 0.046; not significant (NS)], partly because there was already a relatively large amount of DOP present. NP concentrations were, however, significantly higher in T than in C plots (0.021 vs. 0.013 microg g(-1) SED = 0.002; P < 0.05). There was no consistent change over time in the mean soil concentrations of these compounds when sampled at intervals of 3-6 months. Concentrations in soil samples collected at monthly intervals following sludge application indicated that the variation in concentrations of these endocrine-disrupting compounds (EDC) was unrelated to time since sludge application. Rates of soil ingestion, expressed as the percentage of DM intake represented by soil, were higher during the winter than the summer (5.40 vs. 1.17; SED = 0.360; P < 0.001) and estimated daily intakes of DOP and NP were up to 150 microg and 8 microg, respectively. It is concluded that the application of sewage sludge to pasture does not increase soil concentrations of phthalate (as DOP) or alkyl phenols. Thus, the risk of increased exposure to these EDC as a result of sludge application is small. However, the small effect of sludge application on soil concentrations may be largely a reflection of the relatively high concentrations of DOP already present in the soil, which may be biologically significant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号