首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   2篇
综合类   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
厦门市土地利用及氮负荷变化研究   总被引:1,自引:0,他引:1  
高强度的人类活动改变了城市土地利用方式和城市内氮素循环,但城市土地利用变化如何影响城市氮负荷时空变化的研究仍缺乏.本研究以厦门市为例,基于物质平衡的城市氮流动估算方法,分析了2005—2010、2010—2015年两个时间段内厦门市土地利用及氮负荷的时空演变特征及土地利用变化对氮负荷的影响.结果表明:2005—2010、2010—2015年期间城市各土地利用类型中工业、居民区及交通用地面积增加最为显著,占总面积的比例从16.9%增加到30.3%,而林地和其他类型面积的比例从53.78%下降至38.01%.大量农林地转变为工业和交通用地,导致单位面积氮负荷强度分别增加了10倍和25倍.城镇居民用地、交通用地等氮排放强度较高的土地利用类型不断扩张,造成城市中活性氮排放增加了2.1倍.同时,土地利用的空间格局也影响着城市氮负荷的空间变化特征,氮排放热点在空间上逐渐向岛外扩张,且强度也随之增加.  相似文献   
2.
污水处理厂是城市重要的氮移除系统,同时也是潜在的氮污染源.研究城市污水处理过程中的点源氮污染物排放特征及其潜在可能性来源,有助于理解城市化过程中污染性氮素的循环过程.本文选择北京市城市化程度较高的海淀区,对服务此区域的污水处理厂进行为期1年的定点采样,分析区域污水处理过程中氮污染排放规律,并探讨其可能来源.研究结果表明,研究区城市污水中氮浓度具有显著的月变化特征,城市污水TN浓度呈现缓慢增长后递减趋势,变化范围在34.975~59.987 mg·L-1之间;从四季整体来看,TN在中午11:00—13:00和傍晚18:00—21:00浓度值较高.城市污水氮污染物主要以NH+4-N形态存在,而排河尾水中以NO-3-N形态为主.月均每人导致的污水氮污染排放量为0.95kg,峰值出现在12月;污水处理过程中氮污染排放率在寒冷季较高;更为先进的污水处理技术有助于减少处理过程中产生的氮污染排放.寒冷季是1年中控制污水氮污染排放的重要时期.稳定氮同位素溯源方法初步表明,城市污水氮来源呈现季节差异,春、夏、冬季潜在来源包括生活黑水及大气降雨,而当年秋季主要来源是生活黑水.从源头上提高生活黑水的资源化率,有助于城市污水氮污染排放的实际削减.  相似文献   
3.
人类活动造成大量氮素在城市生态系统中聚集,从而对水环境质量造成不利影响.作为一个复合生态系统,城市各系统对水环境的影响呈现不同的变化特征及趋势.本研究以厦门市为例,构建了城市氮流动模型,计算了水环境氮负荷,并通过情景分析的方法探讨了减缓城市水环境氮污染的策略.结果表明,1995—2015年厦门市水环境总氮负荷呈现上升-下降-上升式波动变化,总量介于8800~11100 t之间,主要受地表水氮负荷影响显著,而地下水变化相对稳定.在城市化进程中,城市各系统对水环境产生了不同程度的影响,农作物生产系统、污水处理系统及大气氮沉降是水环境氮污染的主要排放源,年均贡献率达69.0%.农作物生产系统和污水处理系统变化较显著,前者对水环境氮负荷的贡献率从1995年的22.3%下降到2015年的7.0%,后者由1995年的9.7%逐渐上升到2015年的40.7%.情景分析可知,提高城市废物、废水的资源化和综合化利用效率是减少城市水环境氮污染的重要途径.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号