首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   14篇
安全科学   1篇
综合类   14篇
基础理论   4篇
污染及防治   20篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2001年   1篇
排序方式: 共有39条查询结果,搜索用时 970 毫秒
1.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   
2.
The purpose of this study was to examine the direct toxicity of PM2.5 collected from Beijing on human umbilical vein endothelial cells(HUVEC). A Cell Counting Kit 8(CCK8) assay demonstrated that PM2.5 exposure decreased the proliferation of HUVECs in a dosedependent manner. We also found that PM2.5 exposure induced autophagy in HUVECs, as evidenced by:(1) an increased number of double-membrane vesicles;(2) enhanced conversion and punctuation of the microtubule-associated protein light chain 3(LC3); and(3) decreased levels of the selective autophagy substrate p62 in a time-dependent manner.Furthermore, promoting autophagy in PM2.5-exposed HUVECs with rapamycin increased the cell survival rate, whereas inhibiting autophagy via 3-methyladenine significantly decreased cell survival. These results demonstrate that PM2.5 exposure can induce cytotoxicity and autophagy in HUVECs and that autophagy play a protective role against PM2.5-induced cytotoxicity. The findings of the present study imply a direct toxic effect of PM2.5 on HUVECs and provide novel insight into the mechanism of cardiovascular diseases caused by PM2.5 exposure.  相似文献   
3.
室内常见气传真菌孢子的细胞毒性研究   总被引:1,自引:0,他引:1  
分别以MTT比色法和细胞克隆形成率实验,观察了室内常见气传真菌孢子对中国仓鼠(CHL)肺上皮细胞的存活和增殖能力的影响,并通过检测细胞培养液中乳酸脱氢酶(LDH)活力,胞内Ca^2 ,K^ 含量,观察真菌孢子对细胞膜通透性的影响,结果表明,室内常见气传真菌孢子能显影响CHL细胞的活性,并可使细胞膜通透性发生改变,引起胞内LDH外渗,细胞内外离子发生交换,细胞内K^ 浓度降低,而细胞外的Ca^2 有内流的趋势。  相似文献   
4.
Recycling wastewater is becoming more common as communities around the world try to better control their water resources against an increased frequency of either prolonged droughts or intense flooding. For communities in coastal areas, wastewaters may contain elevated levels of bromide(Br~-) and iodide(I~-) from seawater intrusion or high mineral content of source waters. Disinfection of such wastewater is mandatory to prevent the spread of pathogens, however little is known about the toxicity of wastewater after disinfection in the presence of Br~-and I~-. In this study we compared the induction of chronic cytotoxicity in mammalian cells in samples of municipal secondary wastewater effluent amended with elevated levels of Br~-/I~-after disinfection by chlorine, chloramines or ozone to identify which disinfection process generated wastewater with the lowest level of adverse biological response. Chlorination increased mammalian cell cytotoxicity by 5times as compared to non-disinfected controls. Chloramination produced disinfected wastewater that expressed 6.3 times more cytotoxicity than the non-disinfected controls and was 1.3 times more cytotoxic than the chlorinated samples. Ozonation produced wastewater with cytotoxicity comparable to the non-disinfected controls and was at least 4times less cytotoxic than the chlorine disinfected wastewaters. These results indicate that compared to chlorination and chloramination, ozonation of wastewater with high Br~-/Ilevels yielded the lowest mammalian cell cytotoxicity, suggesting its potential as a more favorable method to disinfect wastewater with minimizing the biological toxicity in mind.  相似文献   
5.
Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan(EN) and Lambda-cyhalothrin(LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide(MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains(TA98, TA100) were used to determine the mutagenicity of EN and LC.Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant(p 〈 0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly,the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.  相似文献   
6.
Convenient to apply and available on the Internet software CORAL (http://www.insilico.eu/CORAL) has been used to build up quantitative structure-activity relationships (QSAR) for prediction of cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50% effect pEC50). In this study six random splits of the data into the training and test set were examined. It has been shown that the CORAL provides a reliable tool that could be used to build up a QSAR of the pEC50.  相似文献   
7.
Lee HL  Hsieh DP  Li LA 《Chemosphere》2011,82(3):477-482
Polycyclic aromatic hydrocarbons (PAHs) adsorbed on cigarette sidestream smoke particulates (CSSPs) have been regarded as important contributors to lung carcinogenesis in never smokers. However, limited information is available on PAH levels in cigarette sidestream smoke. Here we determine the concentrations of 22 PAHs, including 16 US EPA priority PAHs, in CSSPs generated from a high market-share domestic brand in Taiwan. Five of the 22 PAHs are undetectable. The remaining 17 PAHs constitute about 0.022% of the total mass of CSSPs. Near one fifth of the PAH mass come from IARC group 1 and group 2 carcinogens. Carcinogenic potency is equivalent to 144 ng benzo[a]pyrene per cigarette converted according to potency equivalency factors (PEFs). The CSSP condensate could activate AhR activity and induce AhR target gene expression. High concentrations of CSSPs also exhibited AhR-independent cytotoxicity. However, mixing the 17 PAHs as the composition in the CSSP condensate could not reconstitute either capacity. Since AhR activation and cytotoxicity are important mechanisms underlying carcinogenic potency, the results suggest that other component compounds play a more active role in carcinogenesis. The approach of individual PAH profiling plus PEF conversion commonly used in risk assessment is likely to underestimate the risk caused by environmental cigarette smoke exposure.  相似文献   
8.
Disinfectants are added to swimming pools to kill harmful pathogens. Although liquid chlorine (sodium hypochlorite) is the most commonly used disinfectant, alternative disinfection techniques like electrochemically generated mixed oxidants or electrochemically generated chlorine, often referred to as salt water pools, are growing in popularity. However, these disinfectants react with natural organic matter and anthropogenic contaminants introduced to the pool water by swimmers to form disinfection byproducts (DBPs). DBPs have been linked to several adverse health effects, such as bladder cancer, adverse birth outcomes, and asthma. In this study, we quantified 60 DBPs using gas chromatography-mass spectrometry and assessed the calculated cytotoxicity and genotoxicity of an indoor community swimming pool before and after switching to a salt water pool with electrochemically generated chlorine. Interestingly, the total DBPs increased by 15% upon implementation of the salt water pool, but the calculated cytotoxicity and genotoxicity decreased by 45% and 15%, respectively. Predominant DBP classes formed were haloacetic acids, with trichloroacetic acid and dichloroacetic acid contributing 57% of the average total DBPs formed. Haloacetonitriles, haloacetic acids, and haloacetaldehydes were the primary drivers of calculated cytotoxicity, and haloacetic acids were the primary driver of calculated genotoxicity. Diiodoacetic acid, a highly toxic iodinated DBP, is reported for the first time in swimming pool water. Bromide impurities in sodium chloride used to electrochemically generate chlorine led to a 73% increase in brominated DBPs, primarily driven by bromochloroacetic acid. This study presents the most extensive DBP study to-date for salt water pools.  相似文献   
9.
Abstract

The industrialization of the agricultural sector has significantly increased the use of chemicals such as pesticides. Therefore, exposure to them is unavoidable, which makes it necessary to assess their safety for humans at actual exposure doses. This paper aims to determine toxicity of three types of pesticides toward human immune cells (HL-60 and U-937): glyphosate (GLY), deltamethrin (DEL), and chlorothalonil (CHL). Cell viability, membrane integrity, inflammation induction, and antioxidant activity were evaluated to determine differences in cellular response to the tested plant protection agents. In experimental models, all tested substances caused increased mortality of cells after only 24?h. Cell membrane damage was recorded under DEL and CHL influences. The largest disintegration of the cell membrane was due to the action of 100?μg/mL DEL for U-937 and CHL at 1?μg/mL for HL-60. GLY at a concentration of 3,600?μg/mL caused significant peroxidation of U-937 cells’ lipids. CHL-induced inflammation in both types of cells tested. DEL and GLY also induced antioxidant activity in cells. These results lead to the conclusion that the tested pesticides act cytotoxically to the cells of the human immune system in doses to which both farmers and consumers are exposed.  相似文献   
10.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号