首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  国内免费   4篇
综合类   11篇
基础理论   4篇
  2019年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
红树林系统处理牲畜废水营养盐的研究   总被引:15,自引:0,他引:15       下载免费PDF全文
在2种盐度条件下(淡水与盐度30的人工海水)通过温室盆栽系统对比研究了2种主红树植物木榄和秋茄对牲畜废水的处理效应。牲畜废水的加入使植物体P含量增加1-4倍,N含量增加0.04-1.30倍。淡水条件 下秋茄和木榄系统N的处理效率分别为84.3%和95.5%,海水条件 下则为92.7%和98.0%,淡水条件下秋茄和木榄系统P的处理效率分别为79.2%和91.8%,海水条件下则为88.0%和97.8%,盐度对秋茄植物体N的去除无显著效应。2种植物体对P的处理效率为4%,远比N的处理效率低,废水来源的营养 盐大多被土壤去除。  相似文献   
2.
闽江口秋茄红树林凋落物产量及分解动态   总被引:1,自引:0,他引:1  
于2017年以闽江口粗芦岛秋茄(Kandelia obovata)红树林为研究对象,分别采用凋落物收集框和分解袋法,研究秋茄凋落物产量及其碳(C)、氮(N)、磷(P)含量月动态及凋落叶分解过程中C、N、P含量与水解酶活性.结果表明:①秋茄凋落物年产量为618.79 g·m~(-2)·a~(-1),其中,叶占61.2%,果、枝和花分别占23.7%、10.5%和4.6%.②凋落叶总氮(TN)含量8月显著高于其他月份(p0.05),而TP含量在1—3月显著高于其他月份;C/N在8月显著低于其他月份(p0.05),而C/P及N/P在9月显著升高(p0.05).③在凋落叶分解过程中,C、N、P含量及其化学计量比随时间存在明显差异(p0.01),并且地上组TC、TN、C/N和C/P明显不同于地下组(p0.05).④在分解过程中,4种水解酶随时间存在明显差异(p0.01).⑤凋落叶酸性磷酸酶活性与土壤温度、电导率和凋落叶TP含量存在显著相关关系(p0.01).这些结果说明,秋茄凋落物产量及元素含量随季节变化存在明显差异;沉积作用对凋落叶分解过程中元素含量有显著影响,水解酶活性主要受凋落叶元素含量和土壤环境因子的控制.  相似文献   
3.
模拟秋茄湿地系统中Pb的分配与迁移   总被引:7,自引:0,他引:7       下载免费PDF全文
在温室中建立模拟秋茄湿地系统,分别用3种不同浓度的人工污水每周定时定量对模拟系统进行污灌1年,用以研究Pb在系统中的分配与迁移。结果表明:加入系统的Pb主要分配存留在土壤中,很少迁移到植物体和掉落物中。由于红树植物的拒盐机制以及被秋茄吸收的Pb主要积累在非生理活动区,表明秋茄幼苗对Pb具较强抗性。同时,应用物质平衡模型,计算得土壤子系统Pb的环境容量较大,因此整个模拟系统对Pb污染的承受力较大。  相似文献   
4.
多氯联苯(PCBs)污染对秋茄Kandelia candel生长的影响   总被引:1,自引:0,他引:1  
通过盆栽实验研究了不同浓度(180×10-9、900×10-9、1 800×10-9和2 700×10-9)的多氯联苯(PCBs)对红树植物秋茄Kandelia candel幼苗生长的影响.结果表明:秋茄的生长指标茎高、茎径、茎体积和生物量的生长量呈现先上升后下降的变化趋势,不过各处理的生长指标均高于对照组;研究表明,秋茄能在PCBs浓度为2 700×10-9的沉积物中正常生长,对PCBs有较强的耐受性和适应性.  相似文献   
5.
人工污水对温室中秋茄苗光合速率的影响   总被引:17,自引:0,他引:17  
用正常?5倍?10倍浓度的人工污水对温室中模拟的秋茄(Kandeliacandel)湿地系统持续灌污1a?在排污1周?3个月?11个月和结束后2个月对污水处理组及对照组植株秋茄幼苗的光合速率和温室中光通量密度?CO2浓度?叶片温度进行同步测定?植株光合速率的实测值和计算值均显示,排污初期正常浓度组变化小,5倍?10倍浓度组稍下降;排污后期正常浓度组显著上升,较高浓度组回复正常;停止排污2个月,各组间无显著差异?结果提示秋茄苗对人工污水的耐受力和抗性较强,对高浓度污水有逐渐适应的过程?   相似文献   
6.
Two-photon laser confocal scanning microscopy (TPLCSM) was first used to visualize the uptake and movement of naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR), from separately contaminated hydroponics solutions into living Kandelia candel (L.) Druce seedlings. With this non-destructive and non-chemical extraction technique, the experimental results revealed that three types of polycyclic aromatic hydrocarbons (PAH) were observed moving into the K. candel and its translocation to radicle, hypocotyl and leaf, and the transmission rates of these PAH in the K. candel were in the order of NAP?>?PHE?>?PYR. Data demonstrate the manner in which PAH enter, transport, and distribute within the K. candel, and provided us some valuable information on uptake and translocation mechanism of PAH. These findings may help to optimize the phytoremediation strategies of PAH in mangrove wetlands.  相似文献   
7.
滨海红树林的生产力极高,在全球碳循环中占有重要地位,但是其碳循环的系统测定却鲜见报道。以深圳福田秋茄林为研究对象,2011年4月-2012年4月对内滩天然林、中滩和外滩人工林的植被、凋落物、粗木质残体、土壤的碳密度和净增量,以及植被和土壤呼吸进行了实际观测,并探讨了土壤有机碳来源,初步构建了秋茄林沿不同滩位的生态系统碳循环模式。结果表明,深圳福田秋茄林的碳密度在234.58~694.46 t.hm^-2之间,其中植被碳密度为44.54~239.51 t.hm^-2,凋落物和粗木质残体碳密度为2.02~24.56 t.hm^-2,土壤碳密度(深度为50 cm)为188.02~430.39 t.hm^-2,生态系统碳密度整体上表现为自内滩向外滩降低的趋势。在研究时段内,3个滩位的植被碳密度净增量为4.31~13.28 t.hm^-2.a^-1,凋落物和土壤碳密度没有显著变化。红树林的凋落物生成量为2.17~10.55 t.hm^-2.a^-1,约有49.94~94.01%通过食草动物、冲入海洋和腐烂分解等途径消耗。植被呼吸量为2.20~12.08 t.hm^-2.a^-1,土壤微生物的异氧呼吸量为0.25~1.61 t.hm^-2.a^-1,甲烷排放为0.09~0.31 t.hm^-2.a^-1,土壤有机碳输入约18.99%~44.43%来自植被内源输入,其余来源于海洋碳输入。生态系统的总初级生产力介于8.68~35.91t.hm^-2.a^-1之间,约有47.38%~74.08%转变为净初级生产力(6.48~23.84 t.hm^-2.a^-1)。碳平衡分析表明,在研究时段内,内滩的天然林是个很大的碳汇,约20.08 t.hm^-2.a^-1,中滩和外滩的人工林碳汇量分别为9.98 t.hm^-2.a^-1和4.03 t.hm^-2.a^-1。相对于陆地森林,秋茄红树林有着显著的碳汇效益,在全球碳循环中起着不可忽视的作用。  相似文献   
8.
Zhao Hu 《毒物与环境化学》2015,97(9):1190-1201
This study evaluated the tolerance and accumulation potential in the mangrove Kandelia obovata under moderate and high levels of external Zn. A greenhouse experiment was conducted to investigate the effects of a range of external Zn concentrations (0–400 mg L?1) on the growth of this species by counting the lateral root number and measuring the root length, leaf area, and total dry biomass. We also determined the Zn accumulation in plant tissues. K. obovata survived with external Zn concentrations of up to 400 mg L?1, although the excess metal resulted in a biomass reduction of 34%. A significant increase in antioxidant enzyme activities occurred in roots of plants under high-level Zn stress, suggesting that K. obovata seedlings could tolerate up to 200 mg L?1 zinc treatment.  相似文献   
9.
九龙江口秋茄红树林镉铬镍元素的累积及动态   总被引:7,自引:0,他引:7  
探讨了福建九龙江口秋茄红树林对重金属元素Cd、Cr、Ni的累积及动态,结果表明;该林区表层土壤(0-30cm)深Cd、Cr、Ni元素的储量分别为21.60、1092.63和3903.90mg/m^2,秋茄植物体各部位Cd、Cr、Ni一的范围分别为0.0444-0.0912、0.085-0.275和0.326-1.000μg/g,该群落现存生物量中,Cd、Cr、Ni元素的储量分别为1166.85、3  相似文献   
10.
The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kande/ia candel were cultivated in sand with various salinities(0‰, 100‰, 20‰, 30‰, 40‰) for 60 d. Plasma membrane vesicles of highpurity in leaves and roots of A. marina and K. candel seedlings were obtained by two-phase partitioning. The function of the plasma membranes, the activity of ATPase, membrane potential and transmembrane proton gradient, at various salinities were investigated. The results showed that within a certain range of salinity( A. marina and roots of K. candel: 0-30‰; leaves of K. candel: 0-20‰), the activity of ATPase increased with increasing salinity, while high salinity (above 30‰ or 20‰) inhibited ATPase activity. In comparison with A. marina, K.candel appeared to be more sensitive to salinity. The dynamics of membrane potential and transmembrane proton gradient in leaves and roots of A. marina and K. candel seedlings were similar to that of ATPase. When treated directly by NaCl all the indexes were inhibited markedly: there was a little increase within 0-10‰( K. candel) or 0-20‰( A. marina) followed by sharp declining. It indicated that the structure and function of plasma membrane was damaged severely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号