首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   5篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Capture success of many predator species has been shown to decrease with increasing prey group size and it is therefore suggested that predators should choose to attack stragglers and/or small groups. Predator choice in the laboratory has shown mixed results with some species preferentially attacking large groups and others preferring to attack stragglers over groups. Such predator choices have not been tested in the field. In our study we presented a binary choice between a shoal of guppies and a single guppy to predators in pools in the Arima river, Trinidad. We observed attacks in 11 different pools from a total of 53 predators (20 acara cichlids, Aequidens pulcher, 32 pike cichlids, Crenicichla frenata, and one wolf-fish, Hoplias malabaricus) and found that all predators showed a strong preference for the shoal of guppies in terms of both first choice and total number of attacks. We discuss the implications of these preferences with regards to predator–prey interactions.  相似文献   
2.
Grouping behavior has various types of antipredator functions. Some of these functions require social transmission of information, such as the many-eyes effect, whereas others do not, such as the dilution and confusion effects. Functions of grouping behavior would enhance with social transmission among group members. We investigated and compared the onsets of schooling behavior and social transmission of information in chub mackerel Scomber japonicus. Onset of schooling behavior was observed in rearing tanks by calculating the degree of parallel swimming. Onset of social transmission was examined by using visual cues from conspecifics. A group of five individuals was put in each of three experimental chambers from which they could see a group of conspecifics in the neighboring chamber. A weak electric stimulus was given to one of these chambers, and information transfer among individuals was observed. We found that social transmission by visual cues started on 30 days posthatching (25.1 mm in standard length), which was 2 weeks after the onset of schooling behavior. The late onset of social transmission relative to schooling behavior might be attributed to different predation pressure with development, or by underdevelopment of optic tectum, as the volume of the optic tectum did not increase just after the onset of schooling behavior.  相似文献   
3.
The benefits and costs of group living are likely to be asymmetric within a group. Animals at the edge of a group are more at risk from predators, according to the selfish herd hypothesis, but are also more likely to obtain scattered food resources. Does an animal's choice between these two conflicting positions depend on its body reserves? The hunger level of marked whirligig beetles (Coleoptera: Gyrinidae) was manipulated and the positions of individuals relative to the rest of the group on the surface of the water were determined with image analysis software. In 12 out of 13 groups, of approximately 18 beetles each, hungry beetles were closer to the edge of a group and had a higher distance to their nearest neighbor than well-fed beetles. Hungry beetles at the edge obtained nearly all of the food particles dropped onto the surface of the water. These results show that position preferences within groups may involve a dynamic feedback between foraging, predator avoidance, and shortterm hunger levels.  相似文献   
4.
Many animals live in groups most of their life. One function of this behaviour is an increased predator protection whereas larger groups provide better protection than smaller ones. A causal explanation is that due to a higher number of shoal members the individual risk of being predated will decrease (“dilution effect”). Additionally, shoaling leads to increased predator confusion. This “confusion effect” can be strengthened by an increased group density, which often correlates with group size. Many studies found that individuals prefer the larger of two groups. However, whether this preference is due to a larger group size or because of an increased density of the larger group remained unclear. To disentangle these factors we gave three-spined sticklebacks (Gasterosteus aculeatus) the choice between shoals of (1) different group size and density, (2) different group size, but equal density and (3) equal group sizes, but different densities. As expected, test fish preferred the larger and denser shoal over the smaller, less dense one. This preference was lost when shoal size differed but density was kept constant. When shoal size was equal but density differed, test fish preferred the less dense shoal. However, this was only the case when test fish chose between two relatively dense shoals. On the other hand, when overall density was low, test fish did not discriminate between shoals of different densities. This result may be explained in terms of predator avoidance. The results show that shoaling preferences might not always be influenced by a higher number of group members but also by the density and cohesiveness of the respective groups. An erratum to this article can be found at  相似文献   
5.
Model based grouping of species across environmental gradients   总被引:1,自引:0,他引:1  
We present a novel approach to the statistical analysis and prediction of multispecies data. The approach allows the simultaneous grouping and quantification of multiple species’ responses to environmental gradients. The underlying statistical model is a finite mixture model, where mixing is performed over the individual species’ responses to environmental gradients. Species with similar responses are grouped with minimal information loss. We term these groups species archetypes. Each species archetype has an associated GLM that can be used to predict distributions with appropriate measures of uncertainty. Initially, we illustrate the concept and method using artificial data and then with application to real data comprising 200 species from the Great Barrier Reef (GBR) lagoon on 13 oceanographic and geological gradients from 12°S to 24°S. The 200 species from the GBR are well represented by 15 species archetypes. The model is interpreted through maps of the probability of presence for a fine scale set of locations throughout the study area. Maps of uncertainty are also produced to provide statistical context. The presence of each species archetype was strongly influenced by oceanographic gradients, principally temperature, oxygen and salinity. The number of species in each group ranged from 4 to 34. The method has potential application to the analysis of multispecies distribution patterns and for multispecies management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号