首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   2篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ecological processes by providing a growing library of reusable interchangeable components and automating many modeling tasks. To build a model, a user selects components from the library, and then writes new components as needed. Some of these components represent specific ecological processes, such as how environmental factors influence the growth of individual trees. Other components provide simulation support such as reading and writing files in various formats to allow inter-operability with other software. The framework manages components and variables, the order of operations, and spatial interactions. The framework provides only simulation support; it does not include ecological functions or assumptions. This separation allows biologists to build models without becoming computer scientists, while computer scientists can improve the framework without becoming ecologists. The framework is designed to operate on multiple platforms and be used across networks via a World Wide Web-based user interface. ECLPSS is designed for use with both single processor computers for small models, and multiple processors in order to simulate large regions with complex interactions among many individuals or ecological compartments. To test Version 1.0 of ECLPSS, we created a model to evaluate the effect of tropospheric ozone on forest ecosystem dynamics. This model is a reduced-form version of two existing models: , which represents an individual tree, and , which represents forest stand growth and succession. This model demonstrates key features of ECLPSS, such as the ability to examine the effects of cell size and model structure on model predictions.  相似文献   
2.
A model for simulating resource flows in a rural subsistence community is described. The People and Landscape Model (PALM) consists of a number of agents representing households, the landscape, and livestock. The landscape is made up of a number of homogeneous land units, or ‘fields’, each represented by an object containing data, methods and properties relevant to the field. Each field object consists of a number of soil layer objects, each of which contains routines to calculate its water balance and carbon and nitrogen dynamics. Organic matter decomposition is simulated by a version of the CENTURY model, while water and nitrogen dynamics are simulated by versions of the routines in the DSSAT crop models. The soil processes are simulated continuously, and vegetation types (crops, weeds, trees) can come and go in a field depending on its management. Crop growth and development are simulated by a generic model based on the DSSAT crop models, and which can be parameterised for different crops. Similarly, livestock growth and resource use is simulated by a generic model which can be parameterised for buffalo, cows, goats, sheep, chickens and pigs.  相似文献   
3.
This article investigates how remotely sensed lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict household lawn fertilization practices on private residential lands. This study involves two watersheds, Glyndon and Baisman’s Run, in Baltimore County, Maryland, USA. Parcel lawn area and lawn greenness were derived from high-resolution aerial imagery using an object-oriented classification approach. Four indicators of household characteristics, including lot size, square footage of the house, housing value, and housing age were obtained from a property database. Residential lawn care survey data combined with remotely sensed parcel lawn area and greenness data were used to estimate two measures of household lawn fertilization practices, household annual fertilizer nitrogen application amount (N_yr) and household annual fertilizer nitrogen application rate (N_ha_yr). Using multiple regression with multi-model inferential procedures, we found that a combination of parcel lawn area and parcel lawn greenness best predicts N_yr, whereas a combination of parcel lawn greenness and lot size best predicts variation in N_ha_yr. Our analyses show that household fertilization practices can be effectively predicted by remotely sensed lawn indices and household characteristics. This has significant implications for urban watershed managers and modelers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号