首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
基础理论   11篇
污染及防治   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 995 毫秒
1.
Abstract:  Effective detection of population trend is crucial for managing threatened species. Little theory exists, however, to assist managers in choosing the most cost-effective monitoring techniques for diagnosing trend. We present a framework for determining the optimal monitoring strategy by simulating a manager collecting data on a declining species, the Chestnut-rumped Hylacola ( Hylacola pyrrhopygia parkeri ), to determine whether the species should be listed under the IUCN (World Conservation Union) Red List. We compared the efficiencies of two strategies for detecting trend, abundance, and presence–absence surveys, under financial constraints. One might expect the abundance surveys to be superior under all circumstances because more information is collected at each site. Nevertheless, the presence–absence data can be collected at more sites because the surveyor is not obliged to spend a fixed amount of time at each site. The optimal strategy for monitoring was very dependent on the budget available. Under some circumstances, presence–absence surveys outperformed abundance surveys for diagnosing the IUCN Red List categories cost-effectively. Abundance surveys were best if the species was expected to be recorded more than 16 times/year; otherwise, presence–absence surveys were best. The relationship between the strategies we investigated is likely to be relevant for many comparisons of presence–absence or abundance data. Managers of any cryptic or low-density species who hope to maximize their success of estimating trend should find an application for our results.  相似文献   
2.
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease‐free insurance populations at isolated sites. Often a resident DFTD‐affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch‐effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease‐free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May–June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost‐effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease‐free.  相似文献   
3.
Abstract:  Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability. The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.  相似文献   
4.
Surveys aimed at finding threatened and invasive species can be challenging due to individual rarity and low and variable individual detection rates. Detection rate in plant surveys typically varies due to differences among observers, among the individual plants being surveyed (targets), and across background environments. Interactions among these 3 components may occur but are rarely estimated due to limited replication and control during data collection. We conducted an experiment to investigate sources of variation in detection of 2 Pilosella species that are invasive and sparsely distributed in the Alpine National Park, Australia. These species are superficially similar in appearance to other yellow-flowered plants occurring in this landscape. We controlled the presence and color of flowers on target Pilosella plants and controlled their placement in plots, which were selected for their variation in cover of non-target yellow flowers and dominant vegetation type. Observers mimicked Pilosella surveys in the plots and reported 1 categorical and 4 quantitative indicators of their survey experience level. We applied survival analysis to detection data to model the influence of both controlled and uncontrolled variables on detection rate. Orange- and yellow-flowering Pilosella in grass- and heath-dominated vegetation were detected at a higher rate than nonflowering Pilosella. However, this detection gain diminished as the cover of other co-occurring yellow-flowering species increased. Recent experience with Pilosella surveys improved detection rate. Detection experiments are a direct and accessible means of understanding detection processes and interpreting survey data for threatened and invasive species. Our detection findings have been used for survey planning and can inform progress toward eradication. Interaction of target and background characteristics determined detection rate, which enhanced predictions in the Pilosella eradication program and demonstrated the difficulty of transferring detection findings into untested environments.  相似文献   
5.
Abstract: Extinction risk has not been evaluated for 96% of all described plant species. Given that the Global Strategy for Plant Conservation proposes preliminary conservation assessments of all described plant species by 2010, herbarium specimens (i.e., primary occurrence data) are increasingly being used to infer threat components from estimates of geographic range size. Nevertheless, estimates of range size based on herbarium data may be inaccurate due to collection bias associated with interspecific variation in detectability. We used data on 377 species of Bignonieae to test the hypothesis that there is a positive relationship between detectability and estimates of geographic range size derived from herbarium specimens. This relationship is expected if the proportion of the true geographic range size of a species that is documented by herbarium specimens is given by the product of the true geographic range size and the detectability of the species, assuming no relationship between true geographic range size and detectability. We developed 4 measures of detectability that can be estimated from herbarium data and examined the relationship between detectability and 2 types of estimates of geographic range size: area of occupancy and extent of occurrence. Our results from regressing estimates of extent of occurrence and area of occupancy on detectability across genera provided no support for this hypothesis. The same was true for regressions of estimated extent of occurrence on detectability across species within genera. Nevertheless, regressions of estimated area of occupancy on detectability across species within genera provided partial support for our hypothesis. We considered 3 possible explanations for this mixed outcome: violation of the assumption of no relationship between true geographic range size and detectability; the relationships between estimated geographic range size and detectability may be an artifact of a negative relationship between estimated area of occupancy and the sampling variance of detectability; detectability may have had 2 opposite effects on estimated species range sizes: one determines the proportion of the true range of a species documented by herbarium specimens and the other determines the distribution of true range size for the species actually observed with herbarium data. Our findings should help improve understanding of the potential biases incurred with the use of herbarium data.  相似文献   
6.
Environmental and Ecological Statistics - The theory underlying line transect and variable circular plot surveys—distance sampling—begins with an assumed detectability function, giving...  相似文献   
7.
Estimators for the population sizes of animal species are similar to Horvitz-Thompson estimators — they involve dividing counts of detected animals by the probabilities of detection. Knowing detection probabilities for different subpopulations allows one to estimate each sub-population size with such an estimator, and to add the results for an estimator of the total population. In the case where the proportions of animals belonging to the different sub-populations are also known, this paper shows that using those proportions to arrive at a common average detection probability will, when used in conjunction with the total number of animals detected, result in a better estimator. We provide two examples where the inferior estimator may seem sensible.  相似文献   
8.
Abstract: Informally gathered species lists are a potential source of data for conservation biology, but most remain unused because of questions of reliability and statistical issues. We applied two alternative analytical methods (contingency tests and occupancy modeling) to a 35‐year data set (1973–2007) to test hypotheses about local bird extinction. We compiled data from bird lists collected by expert amateurs and professional scientists in a 2‐km2 fragment of lowland tropical forest in coastal Ecuador. We tested the effects of the following on local extinction: trophic level, sociality, foraging specialization, light tolerance, geographical range area, and biogeographic source. First we assessed extinction on the basis of the number of years in which a species was not detected on the site and used contingency tests with each factor to compare the frequency of expected and observed extinction events among different species categories. Then we defined four multiyear periods that reflected different stages of deforestation and isolation of the study site and used occupancy modeling to test extinction hypotheses singly and in combination. Both types of analyses supported the biogeographic source hypothesis and the species‐range hypothesis as causes of extinction; however, occupancy modeling indicated the model incorporating all factors except foraging specialization best fit the data.  相似文献   
9.
Abstract

Trace amounts of 2,4‐D ‐ which does not cause visible damage in plant ‐ are detectable in plant leaves by chlorophyll fluorescence regeneration in two ways. (I) In illuminated leaves the level of first and second fluorescence peak differ in treated and untreated leaves. (2) By taking buffer solution (pH=8.6) in dark‐adapted leaves under vacuum, the first, second and the other fluorescence decrease levels differ in untreated and 2,4‐D or MCPA treated leaves.  相似文献   
10.
We developed a method to estimate population abundance from simultaneous counts of unmarked individuals over multiple sites. We considered that at each sampling occasion, individuals in a population could be detected at 1 of the survey sites or remain undetected and used either multinomial or binomial simultaneous-count models to estimate abundance, the latter being equivalent to an N-mixture model with one site. We tested model performance with simulations over a range of detection probabilities, population sizes, growth rates, number of years, sampling occasions, and sites. We then applied our method to 3 critically endangered vulture species in Cambodia to demonstrate the real-world applicability of the model and to provide the first abundance estimates for these species in Cambodia. Our new approach works best when existing methods are expected to perform poorly (i.e., few sites and large variation in abundance among sites) and if individuals may move among sites between sampling occasions. The approach performed better when there were >8 sampling occasions and net probability of detection was high (>0.5). We believe our approach will be useful in particular for simultaneous surveys at aggregation sites, such as roosts. The method complements existing approaches for estimating abundance of unmarked individuals and is the first method designed specifically for simultaneous counts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号