首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
环保管理   1篇
综合类   1篇
基础理论   1篇
污染及防治   11篇
社会与环境   1篇
  2022年   3篇
  2021年   1篇
  2015年   1篇
  2011年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1988年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The extensive extraction of arsenic (As)-contaminated groundwaters for drinking, household and agricultural purposes represents a serious health concern in many districts of Bangladesh. This laboratory-based incubation study investigated the sources and mechanisms of As mobilization in these groundwaters. Several incubation studies were carried out using sediments collected from the Bangladesh aquifer that were supplemented, or not, with different nutrients, followed by an analysis of the sediment suspensions for pH, ORP (oxidation-reduction potential), EC (electrical conductivity) and As and Fe(ΙΙ) concentrations. In the substrate-amended sediment suspensions incubated under anaerobic environment, there was a mobilization of As (maximum: 50–67 μg/l) and Fe(ΙΙ) (maximum: 182 μg/l), while the ORP value decreased immediately and drastically (as much as −468 mV to −560 mV) within 5–6 days. In the sediment suspensions incubated under control and aerobic conditions, no significant As mobilization occurred. The simultaneous mobilization of As and Fe(ΙΙ) from sediments is a strong indication that their mobilization resulted from the reduction of Fe oxyhydroxide by the enhanced activity of indigenous bacteria present in the sediments; this phenomenon also provides insights on the mobilization mechanism of As in groundwater. The concentrations of As in the sediments used in the incubation studies were strongly linked to the gradients of redox potential development that was stimulated by the quantity of organic nutrient (glucose) used. The penetration of surface-derived organic matter into the shallow aquifer may stimulate the activity of microbial communities, thereby leading to a reduction of iron oxyhydroxide and As release.  相似文献   
2.
Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with JP-4 fuel hydrocarbons. Changes in the composition of trimethylbenzoic acids and the distribution and concentration profiles exhibited by 2,4,6- and 2,3,5-trimethylbenzoic acids temporally and between multilevel wells reflect processes indicative of an actively evolving contaminant plume. The concentration levels of trimethylbenzoic acids were 3-10 orders higher than their tetramethylbenzene precursors, a condition attributed to slow metabolite turnover under sulfidogenic conditions. The observed degradation of tetramethylbenzenes into trimethylbenzoic acids obviates the use of these alkylbenzenes as non-labile tracers for other degradable aromatic hydrocarbons, but provides rare field evidence on the range of high molecular weight alkylbenzenes and isomeric assemblages amenable to anaerobic degradation in situ. The coupling of actual tetramethylbenzene loss with trimethylbenzoic acid production and the general decline in the concentrations of these compounds demonstrate the role of microbially mediated processes in the natural attenuation of hydrocarbons and may be a key indicator in the overall rate of hydrocarbon degradation and the biogeochemical evolution of the KC-135 aquifer.  相似文献   
3.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
4.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
5.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   
6.
Reflections about three influential environmental contaminants papers published in Ambio are presented. The PCB Story by Jensen in (1972) had a very important influence on environmental chemistry. This is captured by way of comments and personal anecdotes. Wania’s and MacKay’s (1993) paper highlights the physical chemistry underlying transport of PCBs and organochlorine pesticides from temperate zone ecosystems to Polar Regions. Their paper exemplifies how principles of chemistry and environmental processes informed understanding the biogeochemical cycles of chemicals of environmental concern (CEC). Mergler et al.’s (2007) paper reviews knowledge of methyl mercury exposure and impacts in humans and served as an example of how to approach exposure and human health concerns for all CECs. All great progress. Then, the question: “How we missed for two decades the importance of plastics in the environment identified in a paper published the same year as The PCB Story? Are we missing yet another important environmental contaminant now?  相似文献   
7.
Assessment of cumulative impacts on wetlands can benefit by recognizing three fundamental wetland categories: basin, riverine, and fringe. The geomorphological settings of these categories have relevance for water quality.Basin, or depressional, wetlands are located in headwater areas, and capture runoff from small areas. Thus, they are normally sources of water with low elemental concentration. Although basin wetlands normally possess a high capacity for assimilating nutrients, there may be little opportunity for this to happen if the catchment area is small and little water flows through them.Riverine wetlands, in contrast, interface extensively with uplands. It has been demonstrated that both the capacity and the opportunity for altering water quality are high in riverine wetlands.Fringe wetlands are very small in comparison with the large bodies of water that flush them. Biogeochemical influences tend to be local, rather than having a measurable effect on the larger body of water. Consequently, the function of these wetlands for critical habitat may warrant protection from high nutrient levels and toxins, rather than expecting them to assume an assimilatory role.The relative proportion of these wetland types within a watershed, and their status relative to past impacts can be used to develop strategies for wetland protection. Past impacts on wetlands, however, are not likely to be clearly revealed in water quality records from monitoring studies, either because records are too short or because too many variables other than wetland impacts affect water quality. It is suggested that hydrologic records be used to reconstruct historical hydroperiods in wetlands for comparison with current, altered conditions. Changes in hydroperiod imply changes in wetland function, especially for biogeochemical processes in sediments. Hydroperiod is potentially a more sensitive index of wetland function than surface areas obtained from aerial photographs. Identification of forested wetlands through photointerpretation relies on vegetation that may remain intact for decades after drainage. Finally, the depositional environment of wetlands is a landscape characteristic that has not been carefully evaluated nor fully appreciated. Impacts that reverse depositional tendencies also may accelerate rates of change, causing wetlands to be large net exporters rather than modest net importers. Increases in rates as well as direction can cause stocks of materials, accumulated over centuries in wetland sediments, to be lost within decades, resulting in nutrient loading to downstream aquatic ecosystems.  相似文献   
8.
The biogeochemical dynamics of 15 perfluorinated compounds (PFCs) were investigated in a heavily urbanised river (River Seine, Paris, France). The target compounds included C4-C10 sulfonates and C5-C14 acids; eleven PFCs were detected and ∑PFCs ranged between 31 and 91 ng L−1 (median: 47 ng L−1). The molecular pattern was dominated by the perfluoroalkyl sulfonates PFHxS and PFOS (>54% of ∑PFCs), which were the only PFCs quantified in both the dissolved and particulate phases. For these PFCs, the sorbed fraction positively correlated with suspended sediment levels. Total PFC levels negatively correlated with river flow rate, which varied between 150 and 640 m3 s−1. This suggests the predominance of point sources (likely WWTP effluent discharge), but a contribution of non-point sources such as combined sewer overflow could not be excluded. The annual PFC mass flow was estimated at 500 kg, which is less than observed for other large European rivers.  相似文献   
9.
In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. <4 nm) that is highly relevant for uptake by organisms. The colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations.VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77 ± 17%) and Cu (60 ± 25%) were present as colloids, which constituted a less important fraction for Cd (37 ± 30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems.  相似文献   
10.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号