首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
废物处理   1篇
污染及防治   10篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 338 毫秒
1.
The impact of fullerene soot (FS), single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes on the behaviour of two 14C-PAHs in sterile soil was investigated. Different concentrations of carbon nanomaterials (0, 0.05, 0.1 and 0.5%) were added to soil, and 14C-phenanthrene and 14C-benzo[a]pyrene extractability assessed over 80 d through dichloromethane (DCM) and hydroxypropyl-β-cyclodextrin (HPCD) shake extractions. Total 14C-PAH activity in soils was determined by combustion, and mineralisation of 14C-phenanthrene was monitored over 14 d, using a catabolically active pseudomonad inoculum. No significant loss of 14C-PAH-associated activity from CNM-amended soils was observed over the ‘aging’ period. CNMs had a significant impact on HPCD-extractability of 14C-PAHS; extractability decreased with increasing CNM concentration. Additionally, 14C-phenanthrene mineralisation was inhibited by the presence of CNMs at concentrations of ≥0.05%. Differences in overall extents of 14C-mineralisation were also apparent between CNM types. It is suggested the addition of CNMs to soil can reduce PAH extractability and bioaccessibility, with PAH sorption to CNMs influenced by CNM type and concentration.  相似文献   
2.
3.
The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its 14C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.  相似文献   
4.
Soil translocation for recultivation of soil removed from construction sites and for the preparation of refilled lysimeters inevitably involves disturbance of soil structure, and, if intermediate storage is included, also drying and rewetting of the soil. We report on an experiment with model forest ecosystems, where uncontaminated forest subsoils were covered with non-contaminated or freshly heavy metal (mainly Zn and Cu) contaminated topsoil in large lysimeters. Monitoring of the chemical composition of the drainage water revealed two distinct soil conditioning phases. During an initial phase of about a year strongly elevated nitrate and sulfate concentrations occurred that were attributed to a mineralisation flush caused by the increased accessability of mineralisable nitrogen and sulfur in destroyed aggregates. These effects were significantly larger in lysimeters with calcareous subsoil than in those with acidic subsoil. The second phase was characterised by a gradual decrease in dissolved organic carbon and sulfate concentrations, in particular in the acidic subsoil. This decrease may be attributed to the depletion of pools made accessible during aggregate destruction or the formation of new aggregates. These chemical changes had only little effects on the concentrations of copper and zinc in the drainage water. Based on our results, it can be concluded that large refilled lysimeters can be used for many purposes without risk of compromised results, if a conditioning phase of about 1 year with sufficiently moist soil conditions is respected. Nevertheless, gradual changes in soil chemical characteristics still occur after this initial phase. Implications for the recultivation of sites using relocated soils are discussed.  相似文献   
5.
Fenlon KA  Jones KC  Semple KT 《Chemosphere》2011,82(2):163-168
The rate of pesticide biodegradation does not remain constant with time, and is dependent on the physico-chemical properties of the soil and of the pesticide as well as on the biology of the soil. Prolonged or repeated contact between soil microbes and pesticides has been shown to result in an increase in the rate and extent of biodegradation. This work assessed the impact of the soil:water ratio on measurement of catabolic induction for 14C-isoproturon, 14C-diazinon and 14C-cypermethrin. Slurrying (1:1 and 1:3 soil:water) with agitation resulted in significantly higher rates and extents of mineralisation than the non-slurried system (P ? 0.05; 1:0 soil:water), except for the mineralisation of 14C-diazinon where the greatest extent of mineralisation occurred in non-slurried soil. Slurrying without agitation resulted in the significant lower mineralisation in all cases (P ? 0.05). There was a significant interaction between the soil:water ratio and length of contact (P ? 0.05). Whilst the use of slurried systems can enhance the extent and rate of mineralisation, there is no improvement in reproducibility, and so for the measurement of catabolic induction, the use of field conditions will lead to a more environmentally relevant measurement.  相似文献   
6.
The metabolite 2,6-dichlorobenzamide (BAM) is a frequent groundwater pollutant produced during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenile). Spatial variability of BAM mineralisation is uncharacterized in surface soil, however, and factors controlling the heterogeneity remain unknown. We addressed these issues by sample-to-sample comparisons of BAM mineralisation rates and a range of soil characteristics at spatial scales ranging from meters to centimetres. For mineralisation assays nano-molar concentrations of labelled BAM were added to determine mineralisation rates under realistic conditions. We found a significant variability of BAM mineralisation which increased with decreasing spatial scale. BAM mineralisation rates were correlated to the density of BAM-degrading bacteria but not to water content, TOC, NH4+, NO3, or pH. The genus Aminobacter, which contains the only BAM degraders known, was detected in MPN samples of BAM degraders by a specific PCR assay targeting the 16S rRNA gene, confirming a role of Aminobacter in BAM mineralisation.  相似文献   
7.
Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before 14C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10−16 mol C intact cell−1 day−1) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation.  相似文献   
8.
This study investigated the microbial degradation of 14C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise 14C-target hydrocarbons was appreciable; ≥16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of 14C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon 14C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community.  相似文献   
9.
Cypermethrin is a widely used insecticide that has caused concern due to its toxicity in the aquatic environment. As with all land applied pesticides, the most significant source of water pollution is from the soil, either due to leaching or washoff. The behaviour of cypermethrin in the soil controls the likelihood of future pollution incidents, with two of the most significant processes being the formation of bound residues and microbial degradation. The formation of bound residues and mineralisation was measured in four organically managed soils from the UK. The formation of bound residues was measured using three different extraction solutions, 0.01 M CaCl2, 0.05 M HPCD and acetonitrile. Biodegradation was assessed by measurement of mineralisation of cypermethrin to CO2. The formation of bound residues varied according to extraction method, soil type and length of ageing. In two of the four soils studied, acetonitrile extractability decreased from 100% initially to 12-14% following 100 d ageing. The extent of mineralisation increased after 10-21 d ageing, reaching 33% of remaining activity in one soil, however following 100 d ageing the extent of mineralisation was significantly reduced in three out of the four soils. As with the formation of bound residues, mineralisation was impacted by soil type and length of ageing.  相似文献   
10.
The influence of PAH chemical structure and concentration, added in either single (75 or 300 mg kg−1) or multiple (2 × 75, 2 × 150 or 4 × 75 mg kg−1) applications as single- or multiple-contaminant systems, on the development of PAH biodegradation in a pristine soil was investigated. Development in microbial catabolic ability was assessed at 0, 28, 56 and 84 d by monitoring 14C-naphthalene, 14C-phenanthrene and 14C-pyrene mineralisation over 14 d in respirometric assays. The presence of other contaminants influenced the ability of the indigenous microflora to mineralise structurally different contaminants over time. 14C-Naphthalene mineralisation was inhibited by the presence of other contaminants; whereas the presence of naphthalene significantly enhanced rates of mineralisation in multiple-contaminant systems containing 14C-phenanthrene and 14C-pyrene. Generally, increasing the number of contaminant applications has implications for catabolic activity of soil microbes. It is suggested the toxic nature of PAHs retarded mineralisation at increased contaminant concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号