首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   1篇
  国内免费   19篇
安全科学   1篇
废物处理   1篇
环保管理   11篇
综合类   34篇
基础理论   18篇
污染及防治   87篇
评价与监测   2篇
社会与环境   2篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   14篇
  2012年   10篇
  2011年   19篇
  2010年   10篇
  2009年   21篇
  2008年   21篇
  2007年   1篇
  2006年   10篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  1996年   1篇
排序方式: 共有156条查询结果,搜索用时 296 毫秒
1.
Hydrilla verticillata(waterthyme) has been successfully used for phytoremediation in arsenic(As) contaminated water.To evaluate the effects of environmental factors on phytoremediation,this study conducted a series of orthogonal design experiments to determine optimal conditions,including phosphorus(P),nitrogen(N),and arsenate(As(Ⅴ))concentrations and initial pH levels,for As accumulation and biotransformation using this aquatic plant species,while also analyzing As species transformation in culture media after 96-hr exposure.Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose.Results indicated that both N and P significantly impacted accumulation,and N was essential in As species transformation.High N and intermediate P levels were critical to As accumulation and biotransformation by H.verticillata,while high N and low P levels were beneficial to As species transformation in culture media.The highest total arsenic accumulation was(197.2±17.4) μg/g dry weight when As(V) was at level 3(375μg/L),N at level 2(4 mg/L),P at level 1(0.02 mg/L),and pH at level 2(7).Although H.verticillata is highly efficient in removing As(Ⅴ) from aquatic environments,its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite.For cost-effective and ecofriendly phytoremediation of As-contaminated water,both N and P are helpful in regulating As accumulation and transformation in plants.  相似文献   
2.
一个耐受镉毒害的拟南芥突变体的筛选   总被引:3,自引:0,他引:3  
从甲基磺酸乙酯(EMS)诱变获得的拟南芥M2代群体(Columbia型)中筛选获得一个耐受镉Cd2 毒害能力显著增强的拟南芥突变体(命名为cdr1-1).遗传分析表明,该突变性状为隐性单基因突变,与野生型相比,cdr1-1突变体在不同发育时期均能耐受Cd2 毒害,且其对Cd2 的积累能力也显著高于野生型.此外,还发现cdr1-1突变体体内的还原型谷胱甘肽(GSH)水平显著高于野生型,用GSH合成抑制剂丁硫氨酸亚矾胺处理cdr1-1突变体,导致其耐受Cd2 毒害能力显著下降,几乎接近野生型水平,表明cdr1-1突变体对Cd2 的耐受性至少部分依赖于GSH介导的途径.  相似文献   
3.
重金属污染土壤植物修复法   总被引:17,自引:0,他引:17  
重金属污染土壤的植物修复技术是近年来发展起来的一种较新的生态技术 ,其中 ,寻找重金属超富集植物是目前世界范围的研究热点。本文简要评述了重金属污染土壤的植物修复法的原理及类型 ,重金属超富集植物的应用潜力与最新展望 ,对国内外在这一领域的研究进展作一简单综述。  相似文献   
4.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.  相似文献   
5.
重金属污染土壤螯合诱导植物修复研究进展   总被引:3,自引:1,他引:2  
土壤重金属污染来源广泛、危害严重,已经成为环境污染治理中的热点、难点问题。重金属污染土壤螯合诱导植物修复技术是在化学修复、植物修复的基础上发展起来的,具有绿色环保、经济高效等优点,在重金属污染土壤修复领域具有很大的发展空间。本文在综合螯合诱导植物修复技术发展概况的基础上,系统介绍了螯合剂种类、螯合剂施入时间、施入方式、浓度与剂量、不同富集植物以及土壤理化性质等对重金属污染土壤修复效果的影响及国内外研究概况,综述了螯合诱导植物修复技术的作用机理及其环境风险研究进展。最后,提出了重金属污染土壤螯合诱导植物修复技术还有待深入研究的有关问题。  相似文献   
6.
Adsorption and degradation of levonorgestrel (LNG) by two hydrophytes, Cyperus alternfolius (CA) and Eichhornia crassipes (EC), were investigated under light-shielding conditions in the water column. Variations of LNG concentrations in water, plant root epidermis, root, stem and leaf of the plants were analyzed. The results indicated that the removal efficiency of LNG by hydrophytes over the period of 50 days was significantly greater than the blank control (p 〈 0.05), with the removal rates of 79.80%± 3.10% and 78.86% ± 2.55% for CA and EC, respectively. Compared with bio-adsorption, bio-conversion of LNG was found to be the dominant elimination pathway, evidenced by relatively high conversion rates (77.31% ±2.68% for CA and 77.82% ± 2.95% for EC), while the adsorption rates were lower (1.77% ± 0.90% for CA and 1.05% ± 0.40% for EC). The bio-adsorption and conversion of LNG showed no significant differences between the two hydrophytes. Additionally, the mineralization on root epidermis played an important role in the reduction of LNG in water.  相似文献   
7.
Some plants are known as indoor air purifiers. A large number of studies report kinetic purification results for an extensive panel of plants, i.e. the pollutant concentration (volatile organic compounds, as known as VOC, most of the time) is continuously monitored by gas chromatography. However, only a few papers describe the mechanisms involved in such processes. This study deals with the use of secondary ion mass spectrometry imaging as an efficient tool to locate atmospheric pollutant as bromotoluene within the Hedera helix plant (leaf, roots) and the substrate on which it was previously grown. Hedera helix plants have been placed in a pollution chamber with control of the exposure parameters. Plant and soil samples excised were transferred into a fixative solution of glutaraldehyde and paraformaldehyde for a few days, were dehydrated using ethanol and were embedded with resin. Cross sections were made from the pale brown solids obtained. Then, a device using a cathodic pulverization device capable of depositing a few nanometers of gold atoms over the sample was used to make the surface electronically conductive for the NanoSIMS. Hence, polluted and unpolluted samples of Hedera helix and substrates were obtained following a careful procedure that allowed for the discrimination between polluted and nonpolluted ones. Nanoscale spatial resolution was an invaluable tool (NanoSIMS) to achieve this, and proved that VOCs, such as bromotoluene, were actually trapped by plants such as Hedera helix.  相似文献   
8.
The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L−1) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg−1 dry mass, when treated with 130 mmol Zn L−1. Zinc concentrations greater than 70 mmol L−1 in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg−1 dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.  相似文献   
9.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   
10.
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant−1. MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant−1 in the control, to 1.3 mg plant−1 in the 6 and 10 mmol plant−1 treatments. With 10 mmol plant−1 rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号