首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   2篇
污染及防治   2篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Dinetofuran (DNT), imidacloprid (IMD) and thiamethoxam (THM) are among the neonicotinoid insecticides widely used for managing insect pests of agricultural and veterinary importance. Environmental occurrence of neonicotinoid in post-application scenario poses unknown issues to human health and ecology. A sorption kinetic study provides much needed information on physico-chemical interaction of neonicotinoid with soil material. In this research study, time-dependent sorption behavior of DNT, IMD and THM in vineyard soil was studied. Sorption kinetics studies were conducted over a period of 96 hours with sampling duration varying from 0, 2, 4, 8, 12, 24, 60 and 96 hours. All three neonicotinoids exhibited very low sorption potential for the soil investigated. Overall percent sorption for all three neonicotinoids was below 20.04 ± 2.03% with highest percent sorption being observed for IMD followed by DNT and THM. All three neonicotinoids are highly soluble with solubility increasing with IMD < THM < DNT. Although, DNT has the highest solubility among all three neonicotinoids investigated, it exhibited higher percent sorption compared to THM, indicating factors other than solubility influenced the sorption kinetics. Low sorption potential of neonicotinoids indicates greater leaching potential with regard to groundwater and surface water contamination.  相似文献   
2.
噻虫嗪在土壤中的吸附和淋溶特性   总被引:6,自引:0,他引:6  
采用振荡平衡法、土壤薄层层析法和土柱淋溶法研究了噻虫嗪在砂土、粉砂壤土和砂姜黑土等3种不同理化性质土壤中的吸附和淋溶特性,探讨了农药的吸附与淋溶特性与土壤理化性质的关系以及剂型对农药淋溶特性的影响.结果表明,噻虫嗪在3种土壤中的吸附较好地符合Freundlich方程,Kd值分别为砂土1.25、粉砂壤土2.95、砂姜黑土5.10,其大小顺序与Koc值一致.黏粒含量是影响噻虫嗪在土壤中吸附性的最主要因素,有机质含量为次要因素.土壤薄层层析实验和土柱淋溶实验均表明噻虫嗪在3种土壤中的淋溶速率顺序为砂土粉砂壤土砂姜黑土,且油悬浮剂、水悬浮剂淋溶量较高,水分散粒剂次之,颗粒剂最低.噻虫嗪存在对地下水污染的潜在风险,特别是在黏粒和有机质含量低的环境下使用时,其风险应该引起足够的重视.  相似文献   
3.
Abstract

A novel method of synthesis of tin dioxide quantum dots employing Camellia sinensis shoots as reducing agent and stabilizer is presented. The quantum dots were characterized by UV spectroscopy, X-Ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The crystalline tin dioxide quantum dots with an average size of 4.3?nm were of flake like morphology capped by phenolic compounds of Camellia sinensis. The quantum dots were employed for the photocatalytic degradation of thiamethoxam resulting in 57% degradation within 45 mins.  相似文献   
4.
A soil enrichment culture (SEC) rapidly degraded 96% of 200 mg L?1 neonicotinoid insecticide thiamethoxam (TMX) in MSM broth within 30 d; therefore, its metabolic pathway of TMX, bacterial diversity and plant growth‐promoting rhizobacteria (PGPR) activities of the cultured isolates were studied. The SEC transformed TMX via the nitro reduction pathway to form nitrso, urea metabolites and via cleavage of the oxadiazine cycle to form a new metabolite, hydroxyl CLO‐tri. In addition, 16S rRNA gene‐denaturing gradient gel electrophoresis analysis revealed that uncultured rhizobacteria are predominant in the SEC broth and that 77.8% of the identified bacteria belonged to uncultured bacteria. A total of 31 cultured bacterial strains including six genera (Achromobacter, Agromyces, Ensifer, Mesorhizobium, Microbacterium and Pseudoxanthomonas) were isolated from the SEC broth. The 12 strains of Ensifer adhaerens have the ability to degrade TMX. All six selected bacteria showed PGPR activities. E. adhaerens TMX‐23 and Agromyces mediolanus TMX‐25 produced indole‐3‐acetic acid, whereas E. adhaerens TMX‐23 and Mesorhizobium alhagi TMX‐36 are N2‐fixing bacteria. The six‐isolated microbes were tolerant to 200 mg L?1 TMX, and the growth of E. adhaerens was significantly enhanced by TMX, whereas that of Achromobacter sp. TMX‐5 and Microbacterium sp.TMX‐6 were enhanced slightly. The present study will help to explain the fate of TMX in the environment and its microbial degradation mechanism, as well as to facilitate future investigations of the mechanism through which TMX enhances plant vigor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号