首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
安全科学   10篇
环保管理   1篇
综合类   4篇
评价与监测   1篇
  2020年   3篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2011年   1篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 343 毫秒
1.
利用便携式车载排放测试系统(PEMS)对2辆加装氧化催化转化器(DOC)和催化型柴油颗粒捕集器(CDPF)与否的国III重型柴油货车进行实际道路排放测试.结果表明,2辆改造重型柴油车的CO、THC、固态颗粒物粒数(SPN)和黑碳(BC)实际道路排放因子分别为(1.31±0.37)g/(kW×h)、(0.20±0.03) g/(kW×h)、(7.13×1010±5.27×1010)个/(kW×h)和(0.69±0.06)mg/(kW×h),相对于原始排放(拆除DOC+CDPF)分别降低52.48%、55.69%、99.91%和99.22%.从低速、中速到高速,CO和THC减排比例呈现上升趋势,然而运行工况对SPN和BC减排比例则无显著影响.加装DOC+CDPF会导致NO2在NOx中的占比升高,且从低速、中速到高速涨幅依次增大,但对NOx无明显减排效益,其排放因子为9.53~9.83g/(kW×h),远高于实验室排放限值.  相似文献   
2.
Objective: The aim of this study is to develop an on-scene injury severity prediction (OSISP) algorithm for truck occupants using only accident characteristics that are feasible to assess at the scene of the accident. The purpose of developing this algorithm is to use it as a basis for a field triage tool used in traffic accidents involving trucks. In addition, the model can be valuable for recognizing important factors for improving triage protocols used in Sweden and possibly in other countries with similar traffic environments and prehospital procedures.

Methods: The scope is adult truck occupants involved in traffic accidents on Swedish public roads registered in the Swedish Traffic Accident Data Acquisition (STRADA) database for calendar years 2003 to 2013. STRADA contains information reported by the police and medical data on injured road users treated at emergency hospitals. Using data from STRADA, 2 OSISP multivariate logistic regression models for deriving the probability of severe injury (defined here as having an Injury Severity Score [ISS] > 15) were implemented for light and heavy trucks; that is, trucks with weight up to 3,500 kg and ??16,500 kg, respectively. A 10-fold cross-validation procedure was used to estimate the performance of the OSISP algorithm in terms of the area under the receiver operating characteristic curve (AUC).

Results: The rate of belt use was low, especially for heavy truck occupants. The OSISP models developed for light and heavy trucks achieved cross-validation AUC of 0.81 and 0.74, respectively. The AUC values obtained when the models were evaluated on all data without cross-validation were 0.87 for both light and heavy trucks. The difference in the AUC values with and without use of cross-validation indicates overfitting of the model, which may be a consequence of relatively small data sets. Belt use stands out as the most valuable predictor in both types of trucks; accident type and age are important predictors for light trucks.

Conclusions: The OSISP models achieve good discriminating capability for light truck occupants and a reasonable performance for heavy truck occupants. The prediction accuracy may be increased by acquiring more data. Belt use was the strongest predictor of severe injury for both light and heavy truck occupants. There is a need for behavior-based safety programs and/or other means to encourage truck occupants to always wear a seat belt.  相似文献   
3.
本文对叉车的额定起重量和实际起重量之间的联系与区别进行了分析,指出了额定起重量只是供叉车设计使用的参数,建议不要将额定起重量标识在叉车铭牌上,叉车用户应按照载荷曲线图来确定操作时的实际起重量.  相似文献   
4.
Objective: The present study investigated the relationships between safety climate and driving behavior and crash involvement.

Methods: A total of 339 company-employed truck drivers completed a questionnaire that measured their perceptions of safety climate, crash record, speed choice, and aberrant driving behaviors (errors, lapses, and violations).

Results: Although there was no direct relationship between the drivers' perceptions of safety climate and crash involvement, safety climate was a significant predictor of engagement in risky driving behaviors, which were in turn predictive of crash involvement.

Conclusions: This research shows that safety climate may offer an important starting point for interventions aimed at reducing risky driving behavior and thus fewer vehicle collisions.  相似文献   

5.
利用2043台柴油货车的车载诊断系统监测数据和3套道路遥感监测数据分析唐山市柴油货车活动水平特征,并评估春节和不同管控措施对市内柴油货车活动水平的影响.结果表明:唐山市轻、中和重型柴油货车日均启动4.7、4.3和10.8次·d-1,年均行驶里程分别为(5.2±3.6)×104、(6.3±4.2)×104和(8.9±4.5)×104 km·a-1,百公里油耗分别为(14.9±2.7)、(16.5±1.8)和(57.3±24.2)L·100 km-1.柴油货车主要在唐山市内的非中心区域行驶.春节期间监测车辆在唐山市的行驶里程明显下降,遥感监测本地柴油货车流量下降82.0%.重污染预警期间,非中心区域重型柴油货车的管控措施效果较好,中心城区柴油货车日均行驶里程和行驶车辆数,以及港区柴油货车流量均出现不降反升,建议完善重污染期间中心城区的柴油货车管控措施,以及适度加强港区柴油货车管控.  相似文献   
6.
Objective: Prior research suggested that single-unit trucks are undercounted when using vehicle body codes in the Fatality Analysis Reporting System (FARS). This study explored the extent of the misclassification and undercounting problem for crashes in FARS and state crash databases.

Methods: Truck misclassifications for fatal crashes were explored by comparing the Trucks Involved in Fatal Accidents (TIFA) database with FARS. TIFA used vehicle identification numbers (VINs) and survey information to classify large trucks. This study used VINs to improve the accuracy of large truck classifications in state crash databases from 5 states (Delaware, Maryland, Minnesota, Nebraska, and Utah).

Results: The vehicle body type codes resulted in a 19% undercount of single-unit trucks in FARS and a 23% undercount of single-unit trucks in state databases. Tractor-trailers were misclassified less often. Misclassifications occurred most frequently among single-unit trucks in the weight classes of 10,001–14,000 pounds.

Conclusions: The amount of misclassification of large trucks is large enough to potentially affect federal and state decisions on traffic safety. Using information from VINs results in more complete and accurate counts of large trucks involved in crashes. The National Transportation Safety Board recommended actions to improve federal and state crash data.  相似文献   

7.
Objective: The objective of this study was to investigate vehicle factors associated with child restraint tether use and misuse in pickup trucks and evaluate 4 labeling interventions designed to educate consumers on proper tether use.

Methods: Volunteer testing was performed with 24 subjects and 4 different pickup trucks. Each subject performed 8 child restraint installations among the 4 pickups using 2 forward-facing restraints: a Britax Marathon G4.1 and an Evenflo Triumph. Vehicles were selected to represent 4 different implementations of tether anchors among pickups: plastic loop routers (Chevrolet Silverado), webbing routers (Ram), back wall anchors (Nissan Frontier), and webbing routers plus metal anchors (Toyota Tundra). Interventions included a diagram label, Quick Response (QR) Code linked to video instruction, coordinating text label, and contrasting text tag.

Results: Subjects used the child restraint tether in 93% of trials. However, tether use was completely correct in only 9% of trials. An installation was considered functional if the subject attached the tether to a tether anchor and had a tight installation (ignoring routing and head restraint position); 28% of subjects achieved a functional installation. The most common installation error was attaching the tether hook to the anchor/router directly behind the child restraint (near the top of the seatback) rather than placing the tether through the router and attaching it to the anchor in the adjacent seating position. The Nissan Frontier, with the anchor located on the back wall of the cab, had the highest rate of correct installations but also had the highest rate of attaching the tether to components other than the tether anchor (seat adjustor, child restraint storage hook, around head restraint). None of the labeling interventions had a significant effect on correct installation; not a single subject scanned the QR Code to access the video instruction. Subjects with the most successful installations spent extensive time reviewing the vehicle manuals.

Conclusion: Current implementations of tether anchors among pickup trucks are not intuitive for child restraint installations, and alternate designs should be explored. Several different labeling interventions were ineffective at achieving correct tether use in pickup trucks.  相似文献   

8.
A preliminary study to determine the profile of PAHs in the exhaust of diesel vehicles plying on Delhi roads was conducted. Two different types of diesel vehicles (buses and trucks) with different age groups were selected for sampling purpose. The concentration of Total PAHs (12PAHs) was found to be 50.76 ± 6.62 and 57.72 ± 4.15 mg/g in the exhaust of buses and trucks, respectively. The levels of PAHs were found to be high in trucks as compared to that of buses. The total PAHs concentration in the present study was found to be higher as compared to other studies. Such a high concentration could be attributed to different parameters like the age of the vehicles, driving conditions, the fuel quality and the emission standards.  相似文献   
9.
This paper examines various control locations in heavy mining vehicles. Three trucks have been tested on a skid pad in both clockwise and anticlockwise directions. The skid lengths were measured after each trial. The primary focus of the study was the positioning of various controls and their relevance to various skid lengths. Some additional measures such as NASA-TLX scales were also used to make subjective evaluations. The results are presented in this paper. The findings clearly indicate the relevance of control locations to actual skid lengths. The poorly located controls resulted in greater skid lengths. This is an important finding as skid lengths are related to greater reaction times in a skidding situation and hence greater risk of accidents on relevant trucks. Such accidents can incur large repair bills for damaged equipment whereas more importantly, jeopardizing the life and safety of heavy mining vehicle drivers.  相似文献   
10.
The objective of this study is to estimate the vehicle kilometer traveled (VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is based on traffic volumes. VKT for registered vehicles was 2.11 times greater than that of the applied traffic volumes because each VKT estimation method is different. Therefore, we had to define the inner VKT is moved VKT inner in urban to compare two values. Also, we focused on freight modes because these are discharged much air pollutant emissions. From analysis results, we found middle and large trucks registered in other regions traveled to target city in order to carry freight, target city has included many industrial and logistics areas. Freight is transferred through the harbors, large logistics centers, or via locations before being moved to the final destination. During this process, most freight is moved by middle and large trucks, and trailers rather than small trucks for freight import and export. Therefore, these trucks from other areas are inflow more than registered vehicles. Most emissions from diesel trucks had been overestimated in comparison to VKT from applied traffic volumes in target city. From these findings, VKT is essential based on traffic volume and travel speed on road links in order to estimate accurately the emissions of diesel trucks in target city. Our findings support the estimation of the effect of on-road emissions on urban air quality in Korea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号