首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  国内免费   5篇
安全科学   6篇
环保管理   1篇
综合类   17篇
基础理论   2篇
污染及防治   1篇
社会与环境   2篇
灾害及防治   3篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有32条查询结果,搜索用时 468 毫秒
1.
风浪作用下海岸区域的酸性污染物扩散   总被引:1,自引:0,他引:1  
基于风浪和水流计算模型,综合考虑风浪作用的影响,建立了计算酸性污染物的输移扩散模型。通过计算三门湾海域在常浪向情况下四个时刻的污染物排放模式,将有无风浪影响的两者结果进行对比,初步分析了风浪作用下的酸性污染物扩散规律。结果认为:潮型、排放时刻、风浪等因素都会使酸性污染物的扩散面积与污染持续时间发生变化;并且在该方向风浪影响下,扩散面积与污染持续时间都有减小的趋势。  相似文献   
2.
在太湖冬季不同风速下(0.8、1.8、2.7、3.2、4.0 m·s-1)采集了不同深度(水深0.1、1.0和1.8 m,分别记为上、中和下层)的水样,测定了水体和悬浮物中的砷含量及水质参数,计算了砷在两相之间的分配系数,以期了解在太湖生物活动最低的阶段,风浪扰动作用对砷在水相和悬浮物相之间分配的影响.结果显示,随着风浪作用的加强,水体总砷含量有所增加,相应的悬浮物总砷含量及砷的分配系数降低,说明风浪作用可以降低悬浮物吸附砷的能力,以至于促进砷从悬浮物中的释放,进而使水体中的溶解态砷增加.相关性分析及变化趋势比较分析发现,砷分配系数的降低与在风浪扰动的影响下悬浮物浓度和溶解氧的增加,以及叶绿素a浓度的下降有关.不同风速下各参数的垂向分布变化显示,风浪扰动对中下层的砷分配系数以及中层的悬浮物砷含量影响较大;风速变大时,中层溶解态砷含量升高,上层与下层溶解态砷含量降低;而风浪扰动作用对水体总砷的分层变化影响不大.悬浮物浓度、砷浓度及分配系数均在3~4 m·s-1风速下发生变化,且呈现与之前不同的分层特征.4 m·s-1可能是一个临界风速,在4 m·s-1以上的风速下风浪占主导作用,而4 m·s-1以下是湖流与风浪共同作用的结果.  相似文献   
3.
风浪扰动对太湖水体重金属形态的影响   总被引:4,自引:0,他引:4  
对不同风浪条件下水体中的悬浮颗粒物,采用ICP-AES测定其中Co,Cr,Cu,Ni,Pb,Zn,Al,Fe和Mn不同形态的含量.研究表明,水体中Al,Fe,Co,Cr,Pb和Ni可提取态含量随风浪扰动程度的增强其含量均有不同程度的增大. Mn,Zn和Cu在7m·s-1风浪下含量最高,11m·s-1风浪次之,2m·s-1风浪最小.7m·s-1风浪与2m·s-1风浪相比,水体中Mn, Co, Cr, Zn, Cu和Ni的B1, B2, B3态含量增加3-20倍.11m·s-1风浪与7m·s-1风浪相比,Co, Cr和Ni的B1态含量分别增加31.1%-76.8%,Mn, Zn和Cu分别减少22.1%-38.6%; Cr,Zn和Ni的B2态含量增加12.1%-50.2%, Mn减少65.6%, Co和Cu的含量相当; Co和Ni的B3态含量增加15.4%-10.3%,Cr,Mn,Zn和Cu略微减少.水体中的金属主要以Fe-Mn氧化物结合态存在,且金属的三态比例随风浪的变化不明显. Mn的生物有效性最高,Zn,Cu和Ni次之,毒性较大的Pb和Cr的生物有效性较低.Al, Fe和Pb的Fe-Mn氧化物结合态比例非常高,约有74.56%-100%. Co,Cr和Ni的有机结合态比例较高,且Co和 Ni的三态比例比较均一,Cu的B3态较低.  相似文献   
4.
以两种沉水植物马来眼子菜(Potamogeton malainus)和狐尾藻(Myriophyllum spicatum)为研究对象,通过原位模拟试验,比较在相同水位变化幅度下不同高水位持续胁迫水平(分别以T0、T1、T2、T3表示恒静止、持续4 d、持续8 d和持续12 d)对沉水植物的生物量、植株伸长、具体形态指标和光合荧光特性的影响,并同步分析滆湖大洪港内两处风浪差异区(湖岸区M1和湖心区M2)两种沉水植物相应的适应性和形态变化的特征.结果表明,马来眼子菜和狐尾藻都表现出了较好的环境适应性,T0时任意两处的两种植物生物量和株高均最大;在风浪扰动较小区域(M2),持续高水位减弱了两种植物的伸长和生长(p0.01),并显著限制其在地上生物量的投资和茎干横向的分支(p0.05).在风浪扰动较大区域(M1),持续高水位对两种沉水植物产生了相同的形态变化,并显著降低各梯度下其Fv/Fm和快速光响应曲线(p0.05),但M1处两种沉水植物的光合能力均显著大于M2处.狐尾藻对风浪扰动和长时间水位胁迫能表现出更强抗弱光性和光合作用能力.因此,持续高水位胁迫下(小于8 d)两种沉水植物对一定程度水动力仍有较好的形态和生长适应性,对特定水文波动特征进行合理应对以保持沉水植物活力和维持湖泊生态系统具有指导作用.  相似文献   
5.
为了改善重大件船舶在大风浪条件下航行的安全性,保证船舶、船员、重大件货物安全到港,在查阅大量文献、咨询专家并结合实际经验后,构建了重大件船舶大风浪安全指标体系。首次将DEMATEL-ANP(决策试验与评价实验室-网络分析法)方法引入大风浪安全领域,建立了重大件船舶大风浪航行安全的DEMATEL-ANP结构。通过DEMATEL方法计算了指标间综合影响矩阵,并绘制因果图对各指标进行分类。借助综合影响矩阵和重大件船舶大风浪安全指标体系,通过ANP方法梳理网络结构并计算了混合权重。确定了对安全影响较大的指标,并对其进行管控。通过与AHP方法的对比,表明该方法更加合理、客观地考虑了指标间的相互影响,提出的DEMATEL-ANP结构合理、可行,能够很好地应用于大风浪安全领域,对保证船舶安全具有一定的指导意义。  相似文献   
6.
向迅 《环境教育》2011,(1):84-85
在泉州湾红树林湿地,在那一片茂密的红树林里,我竟然读出了一种希冀已久的从内心油然而生的境界.那是事先怎么也没有料到的. 那是我第一次亲眼看见红树林.在此之前,我从来不知道世界上还有生长得如此奇特的树种.它们的名字,我仅仅通过有限的渠道听说过.  相似文献   
7.
黄胜 《环境工程》2023,(12):247-255
风浪引起沉积物再悬浮会直接影响水体光照条件,促进沉积物中污染物的释放,对湖泊生态系统的构建产生着重要影响。采用已发表数据验证了风浪要素和风浪切应力经验计算公式在浅水湖泊中的适应性,并从浅水湖泊风浪扰动机理出发,提出了临界起动应力简化计算方法和适用条件并加以验证。最后,基于简化模型和风致再悬浮影响评估方法研究了风浪对金湖水生态修复的影响,结合生态围隔、综合底质改良剂和复合微生物菌剂等综合措施,恢复金湖沉水植物150万m2。研究结果可用于评估风浪对浅水湖泊沉积物再悬浮的影响,为浅水湖泊水生态修复、内源污染治理工程设计提供理论参考。  相似文献   
8.
船舶速度是船舶废气排放量计算的重要影响因子。为更加准确地测度船舶废气排放量,考虑海洋环境场对船舶速度的影响,分析了风、浪、流影响下的船舶运动,利用获取的实时风、浪、流信息对船舶AIS提供的航速进行修正,在此基础上建立了风、浪、流影响下的船舶废气排放测度模型,并介绍了船舶引擎功率的估算方法,以及排放因子和负荷因子的确定。最后,选取某散货船和客滚船的两个航次,分别采用传统模型和风、浪、流影响下的船舶废气排放计算模型进行计算,以CO2排放量反推油耗,并计算其与实际油耗的误差,结果表明,与传统模型计算结果相比,基于风、浪、流影响下的船舶废气排放测度模型得到的误差均有所减小,分别减小16.90%、18.60%、21.59%、21.94%,验证了模型的有效性。  相似文献   
9.
王哲  唐军 《海洋环境科学》2018,37(5):647-654
以广东湛江红树林海岸为研究区域,使用Holland台风模型,选择具有代表性的201213号台风启德为天气背景,基于SWAN模式采用三重嵌套方法模拟了近岸台风浪的传播运动,在模型验证的基础上,进一步在湛江沿岸布置植被,建立了近岸植被水域台风浪传播运动的数值模型,并分析了近岸植被对台风浪传播变形的影响。结果表明,台风浪在近岸植被区传播时,随着植被区宽度、植被高度和植被密度的增加,台风浪传播中的波高衰减增大,植被对台风浪的衰减作用愈剧烈。  相似文献   
10.
针对极值风浪荷载之间的相关性,提出了一种基于Nataf变换的相关非高斯分布随机数算法,用来生成极值风浪荷载随机向量;运用该方法讨论了基于独立风浪的荷载效应和基于相关风浪的荷载效应的极值之间的关系,并且对不同的风浪联合荷载效应的拟合方法进行了评定;应用最小二乘法及极值Ⅰ型分布拟合实际风、浪荷载效应,然后对此分布模型运用Nataf变换随机数算法和一般随机数算法生成随机向量,最后通过与实际风浪联合荷载效应比较,验证了所提方法的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号