首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   1篇
环保管理   21篇
综合类   10篇
基础理论   11篇
污染及防治   2篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2004年   6篇
  2003年   2篇
  1998年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
排序方式: 共有44条查询结果,搜索用时 312 毫秒
1.
In this study, we asked the Ariaal herders of northern Kenya to answer "why, what and how" they classified landscape, and assessed and monitored the biodiversity of 10 km(2) of grazing land. To answer the "why question" the herders classified grazing resources into 39 landscape patches grouped into six landscape types and classified soil as 'warm', 'intermediate' or 'cold' for the purpose of land use. For the "what question" the herders used soil conditions and vegetation characteristics to assess biodiversity. Plant species were described as 'increasers', 'decreasers' or 'stable'. The decreaser species were mostly grasses and forbs preferred for cattle and sheep grazing and the increasers were mostly woody species preferred by goats. The herders evaluated biodiversity in terms of key forage species and used absence or presence of the preferred species from individual landscapes for monitoring change in biodiversity. For the "how question" the herders used anthropogenic indicators concerned with livestock management for assessing landscape potential and suitability for grazing. The anthropogenic indicators were related to soils and biodiversity. The herders used plant species grazing preferences to determine the links between livestock production and biodiversity. By addressing these three questions, the study shows the value of incorporating the indigenous knowledge of herders into classification of landscape and assessment and monitoring of biodiversity in the grazing lands. We conclude that herder knowledge of biodiversity is related to the use as opposed to exclusive conservation practices. This type of knowledge is extremely valuable to conservation agencies for establishing a baseline for monitoring changes in biodiversity in the future.  相似文献   
2.
In the latter half of the 20th century, native pine woodlands in Scotland were restricted to small remnant areas within which there was little regeneration. These woodlands are important from a conservation perspective and are habitat for numerous species of conservation concern. Recent developments have seen a large increase in interest in woodland restoration and a dramatic increase in regeneration and woodland spread. The proximate factor enabling this regeneration is a reduction in grazing pressure from sheep and, particularly, deer. However, this has only been possible as a result of a complex interplay between ecological, political and socio-economic factors. We are currently seeing the decline of land management practices instituted 150-200 years ago, changes in land ownership patterns, cultural revival, and changes in societal perceptions of the Scottish landscape. These all feed into the current move to return large areas of the Scottish Highlands to tree cover. I emphasize the need to consider restoration in a multidisciplinary framework which accounts not just for the ecology involved but also the historical and cultural context.  相似文献   
3.
Two important habitat management strategies in pasture systems involve controlled burning and effective grazing manipulation schemes to maintain native climax grassland vegetation These climax grasslands have historically suffered less insect pest pressure than imported systems However, these types of grasslands are difficult to reestablish after relatively severe disruption by man Also, the proper diversity and stability is difficult to capture in developing imported systems. Imported pastures can exhibit substantial yields per land unit but are often composed of vegetation that rapidly mines nutrients stored by the native vegetation, and often need considerable inputs of fossil fuel, manufactured fertilizers and pesticides, because they are or become very susceptible to pestiferous insects. Habitat manipulation efforts can be effective in regulating forage pest populations below economic levels in imported pasture systems Such efforts include: 1) land use (coupled with plant diversity, grazing, and harvest manipulations), 2) sanitation (including controlled burning), 3) planting dates and harvest times (including grazing manipulations), 4) tillage methods, 5) fertilization, 6) trap crops, 7) water management, and 8) fire management for insect pest suppression and augmentation of natural enemies.  相似文献   
4.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   
5.
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter, remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon (DOC) and soil temperature, but negatively correlated with soil pH. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment (ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils, but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while pH and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota (69.65% in relative abundance) and Basidiomycota (30.35%). Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements.  相似文献   
6.
Public rangelands in North America are typically managed under a multiple use policy that includes livestock grazing and wildlife management. In this article we report on the landscape level extent of grassland loss to shrub encroachment in a portion of the Rocky Mountain Forest Reserve in southwestern Alberta, Canada, and review the associated implications for simultaneously supporting livestock and wildlife populations while maintaining range health on this diminishing vegetation type. Digitized aerial photographs of 12 km of valley bottom from 1958 and 1974 were co-registered to ortho-rectified digital imagery taken in 1998, and an un-supervised classification used to determine areas associated with grassland and shrubland in each year. Field data from 2002 were over-layed using GPS coordinates to refine the classification using a calibration-validation procedure. Over the 40-year study period, open grasslands declined from 1,111 ha in 1958 to 465 ha in 1998, representing a 58% decrease. Using mean production data for grass and shrub dominated areas we then quantified aggregate changes in grazing capacity of both primary (grassland) and secondary (shrubland) habitats for livestock and wildlife. Total declines in grazing capacity from 1958 to 1998 totaled 2,744 Animal Unit Months (AUMs) of forage (−39%), including a 58% decrease in primary (i.e., open grassland) range, which was only partly offset by the availability of 1,357 AUMs within less productive and less accessible shrubland habitats. Our results indicate shrub encroachment has been extensive and significantly reduced forage availability to domestic livestock and wildlife, and will increase the difficulty of conserving remaining grasslands. Although current grazing capacities remain marginally above those specified by regulated grazing policies, it is clear that continued habitat change and decreases in forage availability are likely to threaten the condition of remaining grasslands. Unless shrub encroachment is arrested or grassland restoration initiated, reductions in aggregate ungulate numbers may be necessary.
Edward W. BorkEmail:
  相似文献   
7.
Great Basin Land Management Planning Using Ecological Modeling   总被引:1,自引:1,他引:0  
This report describes a land management modeling effort that analyzed potential impacts of proposed actions under an updated Bureau of Land Management Resource Management Plan that will guide management for 20 years on 4.6 million hectares in the Great Basin ecoregion of the United States. State-and-transition models that included vegetation data, fire histories, and many parameters (i.e., rates of succession, fire return intervals, outcomes of management actions, and invasion rates of native and nonnative invasive species) were developed through workshops with scientific experts and range management specialists. Alternative restoration scenarios included continuation of current management, full fire suppression, wildfire use in designated fire use zones, wildfire use in resilient vegetation types only, restoration with a tenfold budget increase, no restoration treatments, and no livestock grazing. Under all the scenarios, cover of vegetation states with native perennial understory declined and was replaced by tree-invaded and weed-dominated states. The greatest differences among alternative management scenarios resulted from the use of fire as a tool to maintain native understory. Among restoration scenarios, only the scenario assuming a tenfold budget increase had a more desirable outcome than the current management scenario. Removal of livestock alone had little effect on vegetation resilience. Rather, active restoration was required. The predictive power of the model was limited by current understanding of Great Basin vegetation dynamics and data needs including statistically valid monitoring of restoration treatments, invasiveness and invasibility, and fire histories. The authors suggest that such computer models can be useful tools for systematic analysis of potential impacts in land use planning. However, for a modeling effort to be productive, the management situation must be conducive to open communication among land management agencies and partner entities, including nonprofit organizations.  相似文献   
8.
We make a theoretical study of nitrogen cycling in a model of a grazing system with five compartments. The rates of uptake of nutrient by plants and herbivores are allowed nonlinear forms which involve no a priori assumptions about whether the system is subject to top-down or bottom-up control. We derive a method of piecewise linear approximation which allows analytical study of the system. We then use this method to investigate the properties of the equilibrium states of the system, and in particular whether the system favours donor- or recipient-control, the grazing optimization problem, and the potential benefits of herbivory to plant growth. We are able to generalise our results to all uptake functions of the same qualitative class as those considered, and to show that in general the system will tend to a stable equilibrium state of donor-controlled herbivory. In this model, the presence of the ‘right’ class of herbivore is not only beneficial to plant growth in certain circumstances, but can be essential to their survival, allowing plants to co-exist with herbivores under conditions in which they would be unable to survive alone.  相似文献   
9.
Estimating influence of stocking regimes on livestock grazing distributions   总被引:1,自引:0,他引:1  
Livestock often concentrate grazing in particular regions of landscapes while partly or wholly avoiding other regions. Dispersing livestock from the heavily grazed regions is a central challenge in grazing land management. Position data gathered from GPS-collared livestock hold potential for increasing knowledge of factors driving livestock aggregation patterns, but advances in gathering the data have outpaced advancements in analyzing and learning from it. We fit a hierarchical seemingly unrelated regression (SUR) model to explore how season of stocking and the location where cattle entered a pasture influenced grazing distributions. Stocking alternated between summer on one side of the pasture one year and fall on another side of the pasture the next year for 18 years. Waypoints were recorded on cattle for 50 d each year. We focused our analysis on the pasture's 10 most heavily grazed 4-ha units, because these units were the most prone to negative grazing impacts. Though grazing of the study units was always disproportionately heavy, it was much heavier with the summer than fall stocking regime: Bayesian confidence intervals indicate summer grazing of study units was approximately double the average fall grazing value. This is our core result, and it illustrates the strong effect stocking season or date or both can have on grazing distributions. We fit three additional models to explore the relative importance of stocking season versus location. According to this analysis, stocking season played a role, but stocking location was the main driver. Ostensibly minor factors (e.g. stocking location) can greatly influence livestock distributions.  相似文献   
10.
Sponges constitute an abundant and functionally important component of coral reef systems. Given their demonstrated resistance to environmental stress, it might be expected that the role of sponges in reef systems under modern regimes of frequent and severe disturbance may become even more substantial. Disturbances have recently reshaped the community structure of many Caribbean coral reefs shifting them towards a state of persistent low coral cover and often a dominance of macroalgae. Using competition and growth rates recorded from Glover's Atoll in Belize, we parameterise a mathematical model used to simulate the three-way competition between sponges, macroalgae and coral. We use the model to determine the range of parameters in which each of the three species might be expected to dominate. Emergent properties arise from our simple model of this complex system, and these include a special case in which heightened competitive ability of macroalgae versus coral may counter-intuitively prove to be advantageous to the persistence of corals. Importantly, we show that even under scenarios whereby sponges fail to invade the system, inclusion of this third antagonist can qualitatively affect the likelihood of alternative stable states - generally in favour of macroalgal dominance. The interplay between multi-species competition and predation is complex, but our efforts highlight a key process that has, until now, remained unexplored: the extent to which sponges dissipate algal grazing pressure by providing generalist fish with an alternative food source. We highlight the necessity of identifying the extent by which this process takes place in tropical systems in order to improve projections of alternative stable states for Caribbean coral reefs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号