首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   2篇
环保管理   2篇
综合类   2篇
评价与监测   1篇
  2022年   1篇
  2011年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The monthly concentrations of NO2, NOx, SO2 and O3 measured by a passive sampler from February 2003 to January 2004 showed that the air pollution during the winter season in Kathmandu valley was higher than the summer season. The O3 level was found the highest during April, May and June due to strong radiation. The hourly concentrations of NO2, NOx, O3 and suspended particulate matter(SPM) were also measured by automatic instruments on December 2003. Temperature at the height of 60 m and 400 m at Raniban Mountain in the northwest of Kathmandu valley was measured on February 2001 in the winter season and the average potential temperature gradient was estimated from observed temperature. Wind speed was also measured at the department of hydrology, airport section, from 18 February to 6 March 2001. It was found that the stable layer and the calm condition in the atmosphere strongly affected the appearance of the maximum concentrations of NO2 and SPM in the morning, and that the unstable layer and the windy condition in the atmosphere was considerably relevant to the decrease of air pollution concentrations at daytime. The emission amounts of NOx, HCs and total suspended particle(TSP) from transport sector in 2003 were estimated from the increasing rate of vehicles on the basis of the emission amounts in 1993 to be 3751 t/a, 30570 t/a and 1317 t/a, respectively. The diurnal concentrations in 2003 calculated by the two-layers box model reproduced the characteristics of air pollution in Kathmandu valley such as the maximum value of O3 and its time, the maximum value of NO in the morning, and the decrease of NO and NO2 at daytime. The comparison with the concentrations in 1993 calculated suggested that the main cause of air pollution was the emission from transport sector.  相似文献   
2.
The distributed lag effects of ambient particulate air pollution exposure on respiratory hospital admissions in Kathmandu Valley are modelled using daily time series data. The extended exposure to PM10 is accounted for by assigning weights to daily average PM10 which decline geometrically as the lag period increases in days. Results show that the percent increase in chronic obstructive pulmonary disease (COPD) hospital admissions and respiratory admissions including COPD, asthma, pneumonia, and bronchitis per 10 μg/m3 rise in PM10 are found to be 4.85% for 30 days lag effect, about 15.9% higher than that observed for same-day lag effect and 3.52% for 40 days lag effect, about 28.9% higher than the observed value for same-day lag effect, respectively.  相似文献   
3.
The Kathmandu Valley in Nepal has experienced a very rapid increase in population resulting in considerable land use/land cover change and also a series of environmental problems. One of the results of the population increase is an expansion of brick manufacturing within the Valley because most structures are brick. The brick kilns are intense in several locations of the Valley and have an interesting pattern of using the same lands for bricks during the dry season and then conversion to rice during the wet, summer monsoon months. The increase in brick production has contributed to environmental problems including decreased soil productivity, lowered ground water levels, and particularly air pollution. Brick manufacturing has little, if any, effective regulation. There is a lack of current, accurate data on brick production that could be resolved by remote sensing methods. Controls should be established and more information acquired on the location and impacts of brick production.  相似文献   
4.
Municipal solid waste generation in Kathmandu, Nepal   总被引:1,自引:0,他引:1  
Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities.  相似文献   
5.
This study reports for the first time a comprehensive analysis of nitrogenous and carbonaceous aerosols in simultaneously collected PM2.5 and TSP during pre-monsoon (March–May 2018) from a highly polluted urban Kathmandu Valley (KV) of the Himalayan foothills. The mean mass concentration of PM2.5 (129.8 µg/m3) was only ~25% of TSP mass (558.7 µg/ m3) indicating the dominance of coarser mode aerosols. However, the mean concentration as well as fractional contributions of water-soluble total nitrogen (WSTN) and carbonaceous species reveal their predominance in find-mode aerosols. The mean mass concentration of WSTN was 17.43±4.70 µg/m3 (14%) in PM2.5 and 24.64±8.07 µg/m3 (5%) in TSP. Moreover, the fractional contribution of total carbonaceous aerosols (TCA) is much higher in PM2.5 (~34%) than that in TSP (~20%). The relatively low OC/EC ratio in PM2.5 (3.03 ± 1.47) and TSP (4.64 ± 1.73) suggests fossil fuel combustion as the major sources of carbonaceous aerosols with contributions from secondary organic aerosols. Five-day air mass back trajectories simulated with the HYSPLIT model, together with MODIS fire counts indicate the influence of local emissions as well as transported pollutants from the Indo-Gangetic Plain region to the south of the Himalayan foothills. Principal component analysis (PCA) also suggests a mixed contribution from other local anthropogenic, biomass burning, and crustal sources. Our results highlight that it is necessary to control local emissions as well as regional transport while designing mitigation measures to reduce the KV's air pollution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号