首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   9篇
环保管理   4篇
综合类   11篇
基础理论   3篇
污染及防治   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2000年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Few studies have been carried out to connect nutrient recovery as struvite from wastewater and sustainable utilization of the recovered struvite for copper and zinc immobilization in contaminated soil. This study revealed the effect of struvite on Cu and Zn immobilization in contaminated bio-retention soil in the presence of commonly exuded plant organic acids. The research hypothesis was that the presence of both struvite and organic acids may influence the immobilization of Cu and Zn in soil. The outcome of this research confirmed that more than 99% of Cu and Zn was immobilized in bio-retention filter media by struvite application. Water-soluble Cu and Zn concentrations of struvite treated soil were less than 1.83 and 0.86 mg/kg respectively, and these concentrations were significantly lower compared to the total Cu and Zn content of 747.05 mg/kg in the contaminated soil. Application of struvite to Cu- and Zn-contaminated soil resulted in formation of compounds similar to zinc phosphate tetrahydrate (Zn3(PO4)2?4H2O) and amorphous Cu and Zn phases. Struvite was effective in heavy metal remediation in acidic soil regardless of the presence of Ca impurities in struvite and the presence of plant organic acids in soil. Overall, this study revealed that struvite recovered from wastewater treatment plants has potential for use as an amendment for heavy metal remediation in contaminated bio-retention soil.  相似文献   
2.
鸟粪石结晶法是一种能同时回收废水中磷源和氮源的处理方法。本文总结了鸟粪石晶体的生长机理、颗粒形成和生长的影响因素,并着重比较了能够形成鸟粪石的各种反应器的优缺点。此外,文章总结了采用鸟粪石结晶法处理实际废水的相关研究,并对其经济效益做了评估。最后对鸟粪石结晶技术未来的研究方向进行了展望,提出了国内鸟粪石结晶技术研究的必要性。  相似文献   
3.

Phosphorus recovery from greenhouse wastewater, using precipitation-crystallization, was conducted under three levels of calcium concentration, 304 mg/L (7.6 mmol/L), 384 mg/L (9.6 mmol/L), and 480 mg/L (12 mmol/L), and also with additions of ammonium and magnesium into the wastewater. Jar test results confirmed high phosphate removal, with more than 90% of the removal achieved with a pH as low as 7.7. Under the low calcium concentration, ammonium addition affected the chemical reactions at pH lower than 8.0, where struvite was produced; when the pH was raised to 8.8, other calcium compounds dominated the precipitation. Under the medium calcium concentration, ammonium and magnesium addition helped struvite precipitation in the low pH range. Hydroxyapatite (HAP) was the main product. Under the high calcium concentration, ammonium addition showed no effects on the precipitation.  相似文献   
4.
The amount of struvite (MgNH4PO4·6H2O) produced by Myxococcus xanthus as well as the culture parameter values (pH, total phosphorus, total Kjeldahl nitrogen) were dependent on the culture medium used. Struvite formation started during the exponential phase and the maximum concentration was observed at the beginning of stationary growth phase. The addition of each medium component to the liquid culture influenced the amount of crystal produced. This amount did not depend on the pH increase during the culture period. The moment of the bacterial growth phase, at which each medium component was added, influenced the struvite formation.  相似文献   
5.
Microwave (MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge, and help promote the recovery of phosphorus as struvite. In this study, to optimize struvite yield, (1) the characteristics of matter released in MW-hybrid treatments were compared, including MW, MW-acid, MW-alkali, MW-H2O2, and MW-H2O2-alkali. The results showed that selective release of carbon, nitrogen, phosphorus, Ca2 +, and Mg2 + achieved by sludge pretreatment using MW-hybrid processes. MW-H2O2 is the recommended sludge pretreatment process for phosphorus recovery in the form of struvite. The ratio of Mg2 +:NH4+-N:PO43 −-P was 1.2:2.9:1 in the supernatant. (2) To clarify the effects of organic matter on struvite recovery, the composition and molecular weight distribution of organic matters were analyzed. Low molecular weight COD was found to facilitate the removal rate of NH4+-N and PO43-P via crystallization, and the amorphous struvite crystals (< 1 kDa) from the filtered solutions had high purity. Therefore, the present study reveals the necessity of taking into consideration the interference effect of high molecular weight organic matters during struvite crystallization from sewage sludge.  相似文献   
6.
The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occur at this point due to the low pH. The increases in ammonium and pH during anaerobic digestion cause precipitation to take place mainly inside the digesters and in downstream processes. This study shows that 50.7% of the available phosphate is fixed in the digester of which 52.0% precipitates as ammonium struvite, 39.2% precipitates as hydroxyapatite and the remaining 8.8% is adsorbed on the surface of the solids. Thermodynamic calculations confirm the precipitation of struvite and hydroxyapatite and also confirm that potassium struvite does not precipitate in the anaerobic digesters.  相似文献   
7.
A combined approach of biological treatment, solids digestion and nutrient recovery was tested on dairy manure. A sequencing batch reactor (SBR) was operated in three modes, in order to optimize nutrient (nitrogen and phosphorus) removals. The highest average removal efficiencies of 91% for NH4-N, 59% for PO4-P and 80% for total chemical oxygen demand (COD) were achieved. Staining experiments suggested the coexistence of glycogen and phosphorus accumulating organisms. Anaerobic digestion of wasted bio-solids was able to produce a PO4-P concentration of 70 mgL?1 in the supernatant. A pilot-scale experiment, designed to recover phosphorus in the supernatant as struvite (magnesium ammonium phosphate), was able to remove 82% of soluble PO4-P.  相似文献   
8.
Anaerobic digestion of dairy manure with enhanced ammonia removal   总被引:5,自引:0,他引:5  
Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor.  相似文献   
9.
This study revealed the relationship between the presence of calcium impurities and ammoniacal nitrogen concentration upon crystallization of struvite. The research hypothesis was that the presence of both calcium and high concentrations of ammoniacal nitrogen(328–1000 mg/L) in waste activated sludge may influence the struvite quality and acid stability. Hence, we studied the impact of Ca:Mg ratio upon morphology, particle size, purity and dissolution of struvite, in the presence of varying levels of excess ammoniacal nitrogen. X-ray diffraction revealed that up to 31.4%amorphous material was made which was assigned to hydroxyapatite. Increasing the ammoniacal nitrogen concentration and elevation of the Mg:Ca ratio maximized the presence of struvite. Struvite particle size was also increased by ammoniacal nitrogen as was twinning of the crystals. Tests with dilute solutions of organic acid revealed the sensitivity of struvite dissolution to the physical characteristics of the struvite. Smaller particles(21.2 μm) dissolved at higher rates than larger particles(35.86 μm). However,struvite dissolved rapidly as the p H was further reduced irrespective of the physical characteristics. Therefore, addition of struvite to low p H soils was not viewed as beneficial in terms of controlled nutrient release. Overall, this study revealed that waste activated sludge effluent with high ammoniacal nitrogen was prospective for synthesis of high quality struvite material.  相似文献   
10.
A novel struvite crystallization method induced by bioelectrochemical acidolysis of magnesia(MgO) was investigated to recover phosphorus(P) from aqueous solution using a dual-chamber microbial electrolysis cell(DMEC). Magnesium ion(Mg~(2+)) in the anolyte was firstly confirmed to automatically migrate from the anode chamber to the cathode chamber, and then react with ammonium(NH+4) and phosphate(PO_4~(3-)) in the catholyte to form struvite. Recovery efficiency of 17.8%–60.2% was obtained with the various N/P ratios in the catholyte. When MgO(low solubility under alkali conditions) was added into the anolyte, the bioelectrochemical acidolysis of MgO naturally took place and the released Mg~(2+)induced struvite crystallization in the cathode chamber for P recovery likewise.Besides, there was a strong linear positive correlation between the recovery efficiency and the MgO dosage(R~2= 0.935), applied voltage(R~2= 0.969) and N/P ratio(R~2= 0.905). Increasing the applied voltage was found to enhance the P recovery via promoting the MgO acidolysis and the released Mg~(2+)migration, while increasing the N/P ratio in the catholyte enhanced the P recovery via promoting the struvite crystallization. Moreover, the electrochemical performance of the system was promoted due to more stable anolyte pH and lower pH gradient between the two chambers. Current density was promoted by 10%, while the COD removal efficiency was improved from 78.2% to 91.8% in the anode chamber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号