首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  2010年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Roelke, Daniel L., Leslie Schwierzke, Bryan W. Brooks, James P. Grover, Reagan M. Errera, Theodore W. Valenti, Jr., and James L. Pinckney, 2010. Factors Influencing Prymnesium parvum Population Dynamics During Bloom Initiation: Results from In-Lake Mesocosm Experiments. Journal of the American Water Resources Association (JAWRA) 46(1):76-91. DOI: 10.1111/j.1752-1688.2009.00392.x Abstract: The alga Prymnesium parvum forms large fish-killing blooms in many Texas lakes. In some of these lakes, however, P. parvum occurs but does not develop blooms. In this study, we investigated factors that may influence bloom initiation by conducting a series of in-lake experiments involving mixing of waters from Lake Whitney, which has a history of P. parvum blooms, with waters from Lake Waco where no blooms have occurred. In all experiments, the addition of Lake Waco waters resulted in a poorer performance of P. parvum. Various experimental treatments and field data show that differences in grazing, pathogens, nutrients, and salts between the two lakes were not likely factors that contributed to this observation. Industrial and agricultural contaminants, allelochemicals and algicidal chemicals were not measured as a part of this research. However, anthropogenic contaminants other than nutrients were not observed at levels exceeding water quality standards in Lake Waco in recent years. On the other hand, nuisance cyanobacteria are common in Lake Waco, where Microcystis sp. and Anabaena sp. were abundant during the initiation of our experiments, both taxa are known to produce chemicals with allelopathic properties. In addition, the emergent field of algal-heterotrophic bacteria interactions suggests that chemicals produced by heterotrophic bacteria should not be overlooked. Further research focusing on the chemical interactions between cyanobacteria and P. parvum, as well as the potential role of algicidal bacteria, in the initiation of P. parvum blooms is necessary, as it may be important to the management of these blooms.  相似文献   
2.
Schwierzke, Leslie, Daniel L. Roelke, Bryan W. Brooks, James P. Grover, Theodore W. Valenti, Jr., Mieke Lahousse, Carrie J. Miller, and James L. Pinckney, 2010. Prymnesium parvum Population Dynamics During Bloom Development: A Role Assessment of Grazers and Virus. Journal of the American Water Resources Association (JAWRA) 46(1):63-75. DOI: 10.1111/j.1752-1688.2009.00391.x Abstract: The toxic haptophyte Prymnesium parvum is a harmful alga known to cause fish-killing blooms that occur worldwide. In Texas (United States), P. parvum blooms occur in inland brackish water bodies and have increased in frequency and magnitude in recent years. In this study we conducted three consecutive field experiments (Lake Whitney) to investigate the influence of zooplankton and viruses on P. parvum bloom dynamics during the time of year when blooms are still typically active in Texas (early spring). A localized P. parvum bloom developed during our study that involved increasing levels of toxicity (based on Pimephales promelas and Daphnia magna bioassays). Only in our last experiment, during later stages of bloom development and under highly toxic conditions, did the presence of grazers show a statistically significant, negative effect on P. parvum population dynamics. During this experiment, a rotifer-dominated zooplankton community emerged, composed mostly of Notholca laurentiae, suggesting that this species was less sensitive than other grazers to toxins produced by P. parvum. Microzooplankton may have also been important at this time. Similarly, only our final experiment demonstrated a statistically significant, negative effect of viruses on P. parvum. This exploratory study, resulting in observed impacts on P. parvum populations by both grazers and virus, enhances our understanding of P. parvum ecology and highlights direction for future studies on resistance of zooplankton to prymnesin toxins and algal-virus interactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号