首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   8篇
综合类   8篇
基础理论   3篇
污染及防治   2篇
  2022年   4篇
  2021年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
排序方式: 共有13条查询结果,搜索用时 171 毫秒
1.
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering(SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles(MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPsbasedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.  相似文献   
2.
Fine particles associated with haze pollution threaten the health of more than 400 million people in China. It is therefore of great importance to thoroughly investigate and understand their composition. To determine the physicochemical properties in atmospheric fine particles at the micrometer level, we described a sensitive and feasible surface-enhanced Raman scattering(SERS) method using Ag foil as a substrate. This novel method enhanced the Raman signal intensities up to 10,000 a.u. for ν(NO_3~-) in fine particles.The SERS effect of Ag foil was further studied experimentally and theoretically and found to have an enhancement factor of the order of ~10~4. Size-fractionated real particle samples with aerodynamic diameters of 0.4–2.5 μm were successfully collected on a heavy haze day,allowing ready observation of morphology and identification of chemical components, such as soot, nitrates, and sulfates. These results suggest that the Ag-foil-based SERS technique can be effectively used to determine the microscopic characteristics of individual fine particles, which will help to understand haze formation mechanisms and formulate governance policies.  相似文献   
3.
利用表面增强拉曼光谱(SERS)对水中芳香胺类污染物进行检测分析.通过化学法合成具有SERS活性的银胶,紫外可见光谱、动态光散射及扫描电子显微镜表征显示制备的银胶分散性良好、粒径均匀;选用背景散射弱、价格便宜的薄层色谱板为承载基底,利用所制备的银胶并结合便携式拉曼光谱仪对芳香胺类污染水样进行现场快速检测,结果显示,适当...  相似文献   
4.
Monolayer-ordered gold nanoring arrays were prepared by ion-sputtering method and used as surface enhanced Raman spectroscopy (SERS) substrates to test the individual atmospheric aerosols particle. Compared to other methods used for testing atmospheric aerosols particles, the collection and subsequent detection in our work is performed directly on the gold nanoring SERS substrate without any treatment of the analyte. The SERS performance can be tuned by changing the depth of the gold nanoring cavity as originating from coupling of dipolar modes at the inner and outer surfaces of the nanorings. The electric field exhibits uniform enhancement and polarization in the ordered Au nanoring substrate, which can improve the accuracy for detecting atmospheric aerosol particles. Combined with Raman mapping, the information about chemical composition of individual atmospheric aerosols particle and distribution of specific components can be presented visually. The results show the potential of SERS in enabling improved analysis of aerosol particle chemical composition, mixing state, and other related physicochemical properties.  相似文献   
5.
Concerns over exposure to mercury have motivated the exploration of cost-effective, rapid, and reliable method for monitoring Hg2 + in the environment. Recently, surface-enhanced Raman scattering (SERS) has become a promising alternative method for Hg2 + analysis. SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures, resulting in substantially increased Raman signals. When Hg2 + is in a close contact with metallic nanostructures, the SERS effect provides unique structural information together with ultrasensitive detection limits. This review introduces the principles and contemporary approaches of SERS-based Hg2 + detection. In addition, the perspective and challenges are briefly discussed.  相似文献   
6.
Microplastics represent an emerging environmental problem worldwide, raising ecological and food safety concerns. Compared to microplastics, there is growing evidence of an even higher abundance of submicro- and nanoplastics in the environment, but a reliable monitoring method for detecting these smaller-sized plastics is lacking. Herein we presented the application of surface-enhanced Raman scattering (SERS) for this purpose. Particles of polystyrene (PS; 600 nm) were used as the probe analyte. Gold nanourchins (AuNU; 50 nm), i.e. urchin-shaped nanoparticles with irregular spikes around the core, were used as the SERS-active substrate. The effectiveness of SERS on PS was evaluated at a single-particle level with different numbers of AuNU in order to determine the minimum conditions required for the onset of the SERS effect. Our findings suggest that SERS of a single particle of PS can be induced by as few as 1–5 particles of AuNU, and that the use of excitation wavelength at 785 nm is appropriate to meet the red-shifted surface plasmon resonance of AuNU upon aggregation. These specifications provide additional information for the development of SERS-based tools for detecting plastic particles < 1 µm in food and environmental samples.  相似文献   
7.
● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm). ● Enhancement factor of V-shaped substrate can reach 20 in microplastics detection. ● V-shaped nanopore array can bring additional volume enhancement. ● V-shaped substrate was more economic in application compared to Klarite substrate. Research on the microplastics (MPs) is developing towards smaller size, but corresponding methods for the rapid and accurate detection of microplastics, especially nanoplastics still present challenge. In this work, a novel surface and volume enhanced Raman spectroscopy substrate was developed for the rapid detection of microplastic particles below 5 μm. The gold nanoparticles (NPs) were deposited onto the surface and into the V-shaped nanopores of anodized aluminum oxide (AAO) through magnetron sputtering or ion sputtering, and then AuNPs@V-shaped AAO SERS substrate was obtained and studied for microplastic detection. SERS performance of AuNPs@V-shaped AAO SERS substrate was evaluated through the detection of polystyrene and polymethyl methacrylate microspheres. Results indicated that individual polystyrene sphere with a diameter of 1 μm can be well detected on AuNPs@V-shaped AAO SERS substrate, and the maximum enhancement factor (EF) can reach 20. In addition, microplastics in ambient atmospheric samples were collected and tested to verify the effectiveness of the AuNPs@V-shaped AAO SERS substrate in the real environment. This study provides a rapid, economic and simple method for detecting and identifying microplastics with small size.  相似文献   
8.
Arsenic (As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering (SERS) has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article.  相似文献   
9.
徐婧  郑红  卢江龙  刘国坤 《环境科学》2022,43(11):4982-4991
近年来,抗生素的滥用引发抗生素抗性基因在环境中的传播和扩散,对生态系统与人类健康构成潜在威胁,特别是饮用水中抗生素污染事件的相关报道引发社会极大关注.因此,如何实现应急公共卫生事件中的痕量抗生素快检成为研究热点.基于表面增强拉曼光谱(SERS)技术,并结合磁性固相萃取(MSPE)样品前处理方法,构建了饮用水水样中ng ·L-1水平喹诺酮类抗生素的快速检测方法.借助于磁性氧化石墨烯复合纳米材料(Fe3 O4@SiO2-GO)的高吸附容量所提供的高富集能力,成功实现了饮用水中1.0 ng ·L-1恩诺沙星(ENR)和5.0 ng ·L-1环丙沙星(CIP)的加标检出,回收率在77.5%~91.5%之间,满足当前饮用水水质检测的要求.对于有机基质复杂的湖水等环境水样,萃取材料的选择性尚有待于进一步提升.  相似文献   
10.
The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1–10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S?O stretching vibration at 1239 cm?1 from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号