首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   8篇
安全科学   1篇
环保管理   2篇
综合类   9篇
基础理论   4篇
污染及防治   3篇
  2023年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
土壤重金属污染的植物修复技术   总被引:28,自引:0,他引:28  
土壤重金属污染的植物修复技术是土壤重金属污染治理的重要方法.分析了土壤重金属污染植物修复的必要性、土壤重金属污染的植物修复技术(植物萃取技术、根际过滤技术、植物固化技术、植物挥发技术)、重金属超累积植物的筛选与植物修复技术的应用,以及云南省开展土壤重金属污染的植物修复工作的前景.  相似文献   
2.
Uranium Accumulation of Crop Plants Enhanced by Citric Acid   总被引:6,自引:0,他引:6  
Citric acid was applied to soil to enhance U accumulation in four crop plants. While the highest enhanced U accumulation of aboveground tissues (a.c. 2000 mg kg−1 dry weight) occurred in the leaves of Indian mustard (Brassica juncea), the highest enhanced U accumulation of roots (a.c. 3500 mg kg−1 dry weight) occurred in canola (Brassica napus var. napus). Uranium translocation among tissues of test plants is in the relation of roots>shoots ≅ leaves. The flowers of sunflower (Helianthus annuus) contained similar or higher U concentrations than those found in shoots, but concentrations in seeds are close to zero. In conclusion, Indian mustard is recommended as a potential species for phytoextraction for U-contaminated soil due to its high U accumulation of aboveground biomass (a.c. 2200 μg per plant). There is no evidence that two types of soils cause a significant difference of the enhanced U accumulation (p<0.05). Results, however, indicate that additional citric acid may result in downward U migration that may contaminate groundwater. Speciation of U that is taken up by plants is also discussed in the end.  相似文献   
3.
谭晓娟 《四川环境》2012,31(2):46-51
通过野外调查采样,分析了四川省攀枝花市朱家包包钒钛矿区土壤的重金属含量,以及攀枝花市朱家包包钒钛矿区生长的20种植物体内Ti的含量,并初步研究了植物对Ti的富集特性。结果表明,20种植物体内Ti的含量都未达到超富集植物的标准。在这些植物中,12号植物地上部对Ti的富集量最高;蕨类植物地下部对Ti的富集量最高;紫荆泽兰的富集能力较强而且其转移能力也是最强的,可作为Ti元素的耐性植物进行更进一步的研究。  相似文献   
4.
镉超积累植物龙葵叶片中镉的积累与有机酸含量的关系   总被引:19,自引:2,他引:17  
孙瑞莲  周启星  王新 《环境科学》2006,27(4):765-769
采用盆栽试验方法,研究镉超积累植物龙葵(Solanum nigrum L.)不同生育期叶片中有机酸的含量与组成,及其与镉生物积累的关系.结果表明,当土壤中镉浓度为25μg.g-1时,苗期和成熟期龙葵叶片镉积累量均达到100μg.g-1以上,且地上部镉含量大于根部镉含量.苗期与成熟期有机酸的含量变化差异显著,苗期龙葵叶片4种有机酸的含量大小为乙酸>酒石酸>苹果酸>柠檬酸;成熟期有机酸含量顺序为苹果酸>酒石酸、乙酸>柠檬酸.苗期龙葵叶片中酒石酸含量与镉含量呈极显著相关,成熟期则发现乙酸和柠檬酸含量与叶片中镉含量呈显著相关,说明龙葵叶片中酒石酸、柠檬酸和乙酸分别可以指示不同生育期龙葵叶片中镉的积累.  相似文献   
5.
某铅锌矿坑口周围具有重金属超积累特征植物的研究   总被引:6,自引:0,他引:6  
针对目前植物修复中Cd-Pb-Cu-Zn复合污染的超富集植物缺乏研究,采用野外采样系统分析方法,对青城子铅锌矿各主要坑口周围17科31种杂草植物进行其积累特性的初步研究。结果表明,全叶马兰(Kalimeris integrifolia)、蒲公英(Taraxacum mongolicum)和鬼针草(Bidens bipinnata)3种植物地上部对Cd的富集系数均>1,且地上部Cd含量大于根部Cd含量,具备了重金属超富集植物的基本特征,进一步研究的价值很大。以杂草为对象筛选超富集植物很可能获得较大突破。  相似文献   
6.
To screen out a series of ideal plants that can effectively remedy contaminated soils by heavy metals is the main groundwork of phytoremediation engineering and the first step of its commercial application on a large scale. In this study, accumulation and endurance of 45 weed species in ]6 families from an agricultural site were in situ examined by using the pot-culture field experiment, and the remediation potential of some weed species with high accumulation of heavy metals was assayed. The results showed that Solanum nigrum and Conyza canadensis can not only accumulate high concentration of Cd, but also strongly endure to single Cd and Cd-Pb-Cu-Zn combined pollution. Thus 2 weed species can be regarded as good hyperaccumulators for the remediation of Cd-contaminated soils. Although there were high Cd-accumulation in Artemigia selengensis, Znula britannica and Cephalanoplos setosum, their biomass was adversely affected due to action of heavy metals in the soils. If the problem of low endurance to heavy metals can be solved by a reinforcer, 3 weed species can be perhaps applied commercially.  相似文献   
7.
运用营养液培养和透射电镜观察方法比较研究了Zn在两种生态型东南景天的根系、茎和叶片中的分布特点和亚显微结构的变化.结果表明,在Zn500μmolL-1浓度下,超积累生态型东南景天的上部叶与下部叶Zn含量的比值在1.47~1.67之间,上部茎与下部茎Zn含量的比值范围为1.81~2.11;非超积累生态型则刚好相反,Zn100μmolL-1处理后,其下部叶和下部茎中Zn含量均高于上部叶和上部茎.电镜观察显示,超积累生态型东南景天的叶、茎细胞的液泡中,和叶细胞的细胞壁上均发现一些颗粒物质,因此推断液泡将Zn区室化或沉积在细胞壁是超积累生态型东南景天耐高Zn胁迫和超积累Zn的重要生理机制.图2表2参19  相似文献   
8.

Goal, Scope and Background

Elevated concentrations of copper in the environment result in accumulation of the metal in plants and cause an increase in reactive oxidative species (ROS). The first response to elevated amounts of ROS is increased levels of enzymatic and non-enzymatic antioxidants that reduce oxidative stress. The aim of our study was to evaluate the early stages of antioxidative responses to the low copper concentrations usually present in moderately polluted environments. In addition, some other parameters were examined to evaluate the effect of copper on plants.

Methods

Duckweed (Lemna minor L.) was exposed to different concentrations of copper sulphate for up to 24 hours. Glutathione concentration and enzymatic activities of catalase, guaiacol peroxidase and glutathione reductase were measured spectrophotometrically. Additionally, delayed and prompt chlorophyll fluorescence was measured by luminometry and fluorometry, respectively. The accumulation of copper in plants exposed for 24 hours to various concentrations of copper sulphate was measured by flame atomic absorption spectrophotometry.

Results

The treatment of plants with copper sulphate resulted in an immediate decrease of the glutathione pool, which was replenished after 24 hours at CuSO4 concentrations lower than 2 μM. Higher CuSO4 concentrations caused a decrease of reduced glutathione. The responses of the antioxidant enzymes glutathione reductase, guaiacol peroxidase and catalase to CuSO4 differed during the first six hours of exposure, but their enzyme activities all increased after 24 hours of exposure. All these enzymes displayed biphasic activity curves with maximum values between 0.5 μM and 1 μM CuSO4. The response of guaiacol peroxidase was the most pronounced and statistically significantly specific and that of catalase the least. Delayed chlorophyll fluorescence decreased after exposure to 1 μM CuSO4, but no significant effect on maximum quantum yield of photosystem II (Fv/Fm) was observed. L. minor accumulated relatively high concentrations of copper. The accumulation rate was higher at lower concentrations of copper in the test medium (up to 2 μM CuSO4) than at concentrations above 2 μM CuSO4.

Discussion

One of the most pronounced antioxidative responses to copper exposure was modified levels of oxidized and reduced forms of glutathione. The decrease of the glutathione pool is most probably coupled with induced production of phytochelatins. Antioxidative enzymes showed the biphasic enzyme activity characteristic of stress response. Guaiacol peroxidase exhibited the greatest significant increase of activity, even at higher CuSO4 concentrations at which the activity of catalase and glutathione reductase dropped. The intensity of delayed chlorophyll fluorescence decreased, indicating reduced photosynthesis of plants under stress. All the measured parameters showed that plants respond to even low copper concentrations very soon after exposure. The accumulation rate of copper in duckweed tissues indicates that L. minor is an accumulator species.

Conclusions

The synchronized and prompt inducibility of antioxidants indicates their involvement in a general plant defence strategy for coping with metal-induced oxidative stress. Glutathione concentration and guaiacol peroxidase activity were found to be the most sensitive of the early indicators of exposure to copper concentrations present in polluted water bodies.

Recommendation and Perspectives

The experimental design of the present study allowed us to compare the sensitivity of various methods and parameters for detecting plant responses to heavy metal-induced oxidative stress. The level of glutathione and the enzyme activities of guaiacol peroxidase and glutathione reductase could be used as a rapidly determined early warning system in toxicity studies.
  相似文献   
9.
Summary. Tissues of most plant species contain < 10 μg Ni g−1 but Ni hyperaccumulators contain more than 1000 μg Ni g−1 . Hyperaccumulated Ni can defend plants from some herbivores but the defensive role of lesser Ni concentrations is little explored. We raised five species of Streptanthus (Brassicaceae) native to ultramafic soils, one of which (S. polygaloides) is a Ni hyperaccumulator whereas the others are simply Ni-tolerant, on Ni-amended and unamended green-house soils to create plants differing in Ni concentrations. On high-Ni soil, leaves of the hyperaccumulator contained 3800 μg Ni g−1 whereas leaves of non-hyperaccumulator species contained 41–64 μg Ni g−1. Plants of all species grown on low-Ni soils had < 14 μg Ni g−1. Slugs (Limax maximus) were fed plant material in no-choice tests over a 50-day period and survival and mass changes were recorded. All slugs fed high-Ni leaves of the hyperaccumulator species died within 21 d. Slugs fed high-Ni leaves of the other species did not differ significantly in survival or mass change from those fed low-Ni leaves. In choice tests, slugs (Lehmannia valentiana) offered both high- and low-Ni S. polygaloides leaves did little damage to high-Ni leaves. We conclude that hyperacumulated Ni can defend S. polygaloides from slug herbivory via both toxicity and deterrence, but these defensive effects do not extend to Streptanthus species containing < 70 μg Ni g−1.  相似文献   
10.
植物修复的技术内涵及展望   总被引:66,自引:2,他引:64  
植物修复是一类治理土壤污染且对环境相对安全可靠的方法,具有明显的技术先进性,有待全面开发利用,基于特异植物根及特异根圈效应,植物对污染物的同化能力与植物根圈的生物降解作用过程,植物修复技术有效性的影响因素及环境安全性能的保证,植物修复今后的动向等对该技术的基本内涵进行了论述,对其今后需要重点解决的疑难问题进行了探讨,旨在促进植物修复技术从小试到中试的发展甚至进入到实际运行的阶段,使它在我国环境污染治理特别是复合环境污染的安全治理方面发挥切实重要的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号