首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
安全科学   1篇
环保管理   7篇
综合类   2篇
基础理论   1篇
污染及防治   2篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2010年   6篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
介绍了小隐孢子虫卵囊的特点及其对人体的危害,分析了pH、混凝剂种类与投加量、电导率和天然有机物含量等对小隐孢子虫卵囊的Zeta电位的影响,总结了混凝-沉淀-过滤和直接过滤对小隐孢子虫卵囊的去除效果,探讨了水温、水质、混凝剂种类与投加量、滤料层组成和滤速等对去除效果的影响。  相似文献   
2.
从珠江口海域分离、鉴定出3种重要有害藻类小普林藻JX12(Prymnesium parvum)、剧毒卡尔藻JX24(Karlodinium veneficum)、红色赤潮藻JX14(Akashiwo sanguinea),在实验室条件下研究了不同反应温度和pH值对小普林藻溶血活性的影响,在此基础上对海洋微藻溶血活性的测定方法进行了优化,并进一步分析比较了不同藻株以及不同生长时期溶血毒性的变化特征。研究结果显示,在实验温度范围内(4~50°C),小普林藻的溶血活性随温度的升高而增大,37℃为其最佳反应温度,pH 8和50 min为其最佳反应条件。不同生长时期的小普林藻溶血毒性具有显著差异,对数期溶血活性(5.67×10~(-7)HU·cell~(-1))显著高于稳定期(2.32×10~(-7)HU·cell~(-1))和衰亡期(3.40×10~(-7)HU·cell~(-1))。分离自珠江口海域的3种微藻均检测出溶血毒性,单个细胞溶血活性由强到弱分别为红色赤潮藻(976.20×10~(-7)HU·cell~(-1))、小普林藻(5.67×10~(-7)HU·cell~(-1))、剧毒卡尔藻(2.58×10~(-7)HU·cell~(-1))。值得注意的是,红色赤潮藻中国株JX14的单位细胞溶血活性显著高于美国株AS2,是后者的2倍以上。本研究首次确认珠江口海域红色赤潮藻、小普林藻和剧毒卡尔藻均具有较强的溶血毒性,这些有害藻类一旦形成赤潮可能对河口生态系统安全以及水产养殖业造成严重危害。  相似文献   
3.
Barkoh, Aaron, Dennis G. Smith, and Gregory M. Southard, 2010. Prymnesium parvum Control Treatments for Fish Hatcheries. Journal of the American Water Resources Association (JAWRA) 46(1):161-169. DOI: 10.1111/j.1752-1688.2009.00400.x Abstract: In 2001, the ichthyotoxic microalga Prymnesium parvum caused massive fish kills and adversely affected fish production at the Texas Parks and Wildlife Department (TPWD) Dundee State Fish Hatchery. Since then, we have investigated several P. parvum bloom and ichthyotoxicity control treatments to develop management strategies that allow fish production and prevent the spread of the alga into unaffected hatcheries and impoundments. Current control successes include treatments for ponds, water supply, and a hazard analysis and critical control point program. For pond treatment, ammonium sulfate (as 0.14-0.25 mg/l un-ionized ammonia nitrogen for temperatures above 15°C), copper sulfate (2 mg/l), Cutrine®-Plus (0.2-0.4 mg/l as copper), or potassium permanganate (3 mg/l above the potassium permanganate demand) controls P. parvum blooms. Copper sulfate at 1 mg/l controls P. parvum but is unable to eliminate ichthyotoxicity whereas potassium permanganate at 2 mg/l above the potassium permanganate demand controls ichthyotoxicity. For water treatment, ultraviolet (UV) light at 193-220 mJ/cm2 doses or ozone at 0.4-1.2 mg/l for 6 min destroy P. parvum cells and reduce or eliminate ichthyotoxicity. A combination UV and ozone treatment appears to provide the best results; however, successful treatments depend on dosage relative to cell density and toxin concentration. To prevent the spread of the alga, hatchery fish delivery units and equipment are cleaned with household bleach (10% solution for 15 minutes) or hydrogen peroxide (62.5-12,500 mg/l for 0.25-24 hours). These treatments are tailored to water quality conditions and the fish species cultured at affected TPWD hatcheries. We recommend that other users test these treatments before applying them to ponds or other impoundments containing fish or other aquatic life.  相似文献   
4.
Hagström, Johannes A., Mario R. Sengco, and Tracy A. Villareal, 2010. Potential Methods for Managing Prymnesium parvum Blooms and Toxicity, With Emphasis on Clay and Barley Straw: A Review. Journal of the American Water Resources Association (JAWRA) 46(1):187-198. DOI: 10.1111/j.1752-1688.2009.00402.x Abstract: Harmful algal bloom (HAB) control and mitigation is a complex problem in ecosystem management. Phytoplankton play an important role in aquatic ecosystems as primary producers and food sources for many commercially important shellfish and there are limited options for targeting just a single species within the community. Chemical treatments (e.g., algaecides), rotting barley straw, nitrogen and phosphorus manipulation, and clay and/or flocculants are but a few techniques tested or used to reduce fish kills or shellfish contamination during a HAB event. Prymnesium parvum control has focused on the use of chemicals, nutrient manipulation, and clay flocculation. However, many HAB control methods have been rejected due to their effects on ecosystems, high costs, or limited effects on target organisms. For example, rotting barley straw (Hordeum vulgare) is considered to be an environmentally friendly alternative, but has been found to have very different results on the phytoplankton community depending on the dominating taxa and is ineffective against P. parvum and dinoflagellate blooms. Clay flocculation is a useful control/mitigation technique during fish kills in marine aquaculture sites in South Korea and can be effective in freshwater if the correct combination of clay and flocculent is used. Toxins produced by P. parvum and Karenia brevis also bind to phosphatic clay, thereby removing and/or neutralizing the toxins, but there is concern that the clay will have a negative effect on sessile organisms. Some shellfish suffer high mortalities and significant impacts on somatic and reproductive tissue growth at high clay loads; however, benthic communities appear to be unchanged after five years of clay treatment in South Korea. There are likely site-specific and ecosystem-specific characteristics that make generalizations about control options difficult and require careful assessment of options at each location.  相似文献   
5.
为研究UV/US(Ultraviolet/Ultrasonic,紫外/超声)协同对水中隐孢子虫的灭活机制,采用UV灯(功率为14 W)与US发生器(频率为20 kHz,功率为150 W)组合装置协同灭活隐孢子虫,考察pH、温度、浊度和HA(腐殖酸)对UV/US协同灭活隐孢子虫的影响,并通过SEM(扫描电镜)、蛋白质试验和琼脂糖凝胶电泳检测对灭活机制进行了探讨.结果表明:pH对UV/US杀灭隐孢子虫的影响不大,碱性条件下灭活率略高于中性和酸性条件;温度对灭活率有一定影响,5℃下灭活率较低,随温度的上升,灭活率逐渐提高,25℃下10 min灭活率可达99%以上;悬浮物抑制隐孢子虫的灭活,浊度为40 NTU时,UV/US作用25 min的灭活率仅为93.88%;HA对灭活的影响表现为低浓度促进,高浓度抑制;ρ(HA)高于10 mg/L时,继续增大ρ(HA)对隐孢子虫灭活率影响不大.研究显示:UV/US协同作用对隐孢子虫的灭活机制主要是使其卵囊破裂,同时损伤了隐孢子虫胞内的DNA.   相似文献   
6.
Kurten, Gerald L., Aaron Barkoh, Drew C. Begley, and Loraine T. Fries, 2010. Refining Nitrogen and Phosphorus Fertilization Strategies for Controlling the Toxigenic Alga Prymnesium parvum. Journal of the American Water Resources Association (JAWRA) 46(1):170-186. DOI: 10.1111/j.1752-1688.2009.00401.x Abstract: Previous studies have shown that three times weekly applications of phosphorus (30 μg P/l) and nitrogen (300 μg N/l) were effective at reducing the density and toxicity of the alga Prymnesium parvum in limnocorrals simulating a 40-day moronid (e.g., striped bass, Morone saxatilis, and palmetto bass, M. saxatilis ×Morone chrysops) fingerling culture period. However, this fertilization regime produced high pH and unionized ammonia-N concentrations that are detrimental to the survival of moronid fry and fingerlings. In two follow-up experiments we changed the source of N from ammonia to nitrate, reduced fertilization rates, and examined the effect of N-only or P-only fertilization. In the first experiment P fertilization rates were reduced by one-half to 15 μg P/l and NO3-N was substituted for NH3-N at the previously used rate of 300 μg N/l. In the second experiment, N fertilization rates were reduced to 150 μg N/l and the frequency of fertilization was determined by pH and P. parvum responses. Nitrate appeared to be as effective as ammonia as a source of N and when used in combination with P reduced P. parvum cell density and ichthyotoxicity. However, reduced N and P application rates and lower pond water temperatures during the study appeared to have decreased the speed at which fertilization produced these effects. While lower fertilization rates reduced algal productivity, high pH remained a concern for fish culture although pH was reduced to levels that might be acceptable with careful management of fish culture activities. Neither N-only nor P-only fertilization had a measurable effect on algal productivity or eliminated P. parvum and its toxicity. Furthermore, P-only fertilization may have increased P. parvum density and toxicity. For controlling P. parvum density and ichthyotoxicity we recommend a fertilization rate of 212 μg NO3-N/l plus 30 μg PO4-P/l applied three times weekly for aquaculture ponds where high pH is not a concern. Where high pH is a concern we recommend a fertilization rate of 117 μg NO3-N/l plus 16 μg PO4-P/l applied three times weekly with careful attention to afternoon pond pH.  相似文献   
7.
Lutz-Carrillo, Dijar J., Gregory M. Southard, and Loraine T. Fries, 2010. Global Genetic Relationships Among Isolates of Golden Alga (Prymnesium parvum). Journal of the American Water Resources Association (JAWRA) 46(1):24-32. DOI: 10.1111/j.1752-1688.2009.00388.x Abstract: Prymnesium parvum is considered among the most harmful algal species in the world for finfish and other gill breathing organisms. Although it is globally distributed, with the exception of Antarctica, P. parvum is usually associated with coastal and brackish waters. Historically, P. parvum incidents were recorded in the eastern hemisphere; however, in 1985 it was detected in inland Texas waters. We used DNA sequence variation of the first internal transcribed spacer in the nuclear ribosomal operon (ITS1) among multiple samples of P. parvum from Texas and other locales to address the possible origins of P. parvum in Texas and the United States (U.S.). With the exception of a sample from Diversion Lake, other samples from Texas, South Carolina, and Wyoming exhibited limited genetic variation and were similar in sequence to a sample from Scotland. The Diversion Lake sample was similar in sequence to samples from Denmark and Norway, and the Maine sample was highly similar to samples from England. These results suggest multiple independent introductions of P. parvum to the U.S.  相似文献   
8.
Rodgers, John H., Jr., Brenda M. Johnson, and West M. Bishop, 2010. Comparison of Three Algaecides for Controlling the Density of Prymnesium parvum. Journal of the American Water Resources Association (JAWRA) 46(1):153-160. DOI: 10.1111/j.1752-1688.2009.00399.x Abstract: Prymnesium parvum has become more prevalent in water resources of the southern United States. As the potential impacts of P. parvum are relatively well known, especially its capability to severely affect fish, managers have sought efficacious, environmentally sound, and socially acceptable strategies for mitigating this noxious species. Laboratory testing was used to identify an effective algaecide for control of P. parvum from Texas, Arizona, Florida, North Carolina, and South Carolina. Cutrine®-Plus at 0.2 mg Cu/l significantly decreased the density of P. parvum in samples from all of these locations. Both copper sulfate and Phycomycin® were less effective for controlling the population growth of P. parvum. The predicted response from the laboratory study was confirmed in the field at the Arizona site. Strategic use of Cutrine®-Plus in larger water resources could provide toxin-free refugia to allow some fish to survive and repopulate the water resource when the golden alga infestation abates.  相似文献   
9.
新型消毒工艺灭活水中小隐孢子虫卵囊   总被引:1,自引:0,他引:1  
对臭氧、臭氧/氯气、臭氧/一氯胺、二氧化氯、UV、脉冲白光、γ射线等新型消毒工艺灭活水中小隐孢子虫卵囊的研究进展进行了综述,总结了它们的灭活效果和动力学规律,分析了水质、水温、卵囊数量、消毒剂剂量、灭活时间等因素的影响.  相似文献   
10.
ABSTRACT: The transmission of disease in ground water is a topic of great concern to government agencies, ground water specialists, and the general public. The purpose of this study was to compare the temporal variability in storm flow of fecal coliform bacteria densities and Cryptosporidium parvum oocyst densities in agriculturally impacted karst ground water. Cryptosporidium parvum oocyst densities ranged from 0 to 1,050 oocysts/1, and mean storm densities ranged from 3.5 to 156.8 oocysts/1. Fecal coliform densities ranged from less than 1 CFU/100ml to more than 40,000 CFU/100ml, and geometric mean storm densities ranged from 1.7 CFU/100ml to more than 7,000 CFU/100ml. Fecal coliform densities correlated well with flow during storms, but Cryptosporidium oocyst densities exhibited a great deal of sample to sample variability and were not correlated with flow. Fecal coliform densities did not correlate positively with Cryptosporidium oocyst densities. Fecal coliform densities were greatest at storm peaks, when sediment loads were also greatest. Multiple transport mechanisms for fecal coliform bacteria and C. parvum oocysts may necessitate various agricultural land management and livestock health maintenance practices to control movement of pathogens to karst ground water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号