首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
基础理论   2篇
污染及防治   1篇
  2017年   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The impact of fungicides triadimefon and propiconazole on soil bacterial populations from a strawberry field was investigated. Two fungicides were applied to the soil at concentrations of 10 mg/kg or 100 mg/kg with soil water contents 20.2% (fresh soil water content) or 26.0% (field capacity). Changes in bacterial communities were assessed using DNA extraction, polymerase chain reaction (PCR) amplification of the 16S rDNA and denaturing gradient gel electrophoresis (DGGE). High performance liquid chromatography (HPLC) was utilized to detect the residue of fungicides in soils. The results showed that propiconazole was more persistent than triadimefon in soils, and the two soil water contents did not cause significant differences in dissipation rates between the two fungicides. A high concentration of propiconazole could inhibit the existence of soil microbes while one of triadimefon might induce the microbial population in the first stage. From unweighted pair-group method using arithmetic averages (UPGMA) dendrograms, the effect of triadimefon and propiconazole at the two applied concentrations on a soil bacterial community could be long term. After triadimefon was applied for 60 days and propiconazole for 75 days, the compositions of microbial communities were not recovered. From the viewpoint of environmental protection, it was of significant importance to pay more attention not only to the residues of pesticide but also to the change in soil microbial communities.  相似文献   
2.
啶虫脒对蜜蜂急性毒性较低,且允许在作物花期施用,而杀菌剂也是蜜源植物花期常用药剂。本文采用点滴法和摄入法测定了10种常用杀菌剂对啶虫脒中华蜜蜂毒性的潜在增效作用。结果表明,点滴田间实际暴露剂量的杀菌剂使啶虫脒对中华蜜蜂的毒性不同程度的增加。点滴杀菌剂和啶虫脒24 h、48 h后,咪鲜胺、丙环唑、腈菌唑、戊唑醇、苯醚甲环唑、嘧菌酯、己唑醇、吡唑醚菌酯、三唑酮、氟硅唑使啶虫脒毒性分别增加14.02、10.74、8.50、7.92、4.77、4.28、4.19、4.07、2.74、2.67倍和8.01、10.14、4.80、7.09、2.66、2.56、3.62、2.69、2.24、1.49倍。摄入田间实际暴露剂量的杀菌剂和啶虫脒混剂24 h、48 h后,啶虫脒对中华蜜蜂的毒性增加。其中,丙环唑、氟硅唑、苯醚甲环唑、嘧菌酯、咪鲜胺使啶虫脒的毒性分别增加3.62、2.46、2.10、1.98、1.56倍和2.07、2.81、2.20、2.58、2.23倍。因此蜜源植物花期应避免丙环唑、咪鲜胺、戊唑醇、腈菌唑与啶虫脒先后喷施或混合喷施,慎用己唑醇等其他6种杀菌剂,以防啶虫脒残留导致中华蜜蜂采集蜂中毒。  相似文献   
3.
Loss of two pesticides with different mobility characteristics, bentazone (Koc 34) and propiconazole (Koc 1800), were studied at three agricultural fields (Askim, Bjørnebekk and Syverud) in SE Norway. A conservative tracer (Br) was used to follow the flow of water. The loss of pesticides varied among the fields, depending on hydrological characteristics and soil properties. The loss of pesticides was higher from two artificially levelled silty clay loam soils with poor aggregate stability (Askim and Bjørnebekk) compared to a loam/silt loam soil with increased content of organic carbon and better aggregate stability (Syverud). The total accumulated loss was <0.5% from all fields. The highest pesticide concentrations were measured at the first runoff episode after application for both the mobile (bentazone) and less mobile pesticide (propiconazole) in the surface runoff. In the drainage water, the peak for the less mobile pesticide coincided with the Br tracer, while the peak for mobile pesticide appeared earlier than the Br tracer. Rapid movement of water, particles and pesticides through soils indicate flow through macropores. Larger proportions (in percent of total applied) of both the mobile and the strongly sorbed pesticides were lost through the drainage as compared to the loss through surface runoff at Askim. Here, it is suggested that macropore flow contribute to the increased loss of pesticides through the drainage. At Syverud, high infiltration capacity reduces the amount of water available for surface runoff, and somewhat higher loss of the mobile pesticide was registered in the drainage compared to the surface runoff. For the strongly sorbed pesticide, however, propiconazole was neither detected in surface nor in drainage water at Syverud. Generally, there was a higher percentage loss of the mobile compared to the strongly sorbed pesticide in both surface and drainage water, which is in agreement with the pesticides mobility characteristics in soil. An exception was, however, the erodible soil Bjørnebekk, where a higher fraction of propiconazole was lost in the surface runoff compared to bentazone. Large amounts of sediment transport from the Bjørnebekk field probably contributed to enhanced transport of the strongly sorbed pesticide.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号