首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  国内免费   10篇
废物处理   4篇
环保管理   2篇
综合类   8篇
基础理论   6篇
污染及防治   20篇
社会与环境   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
This research aimed to evaluate the alga Scenedesmus obliquus toxicity induced by textiledyeing effluents(TDE).The toxicity indicator of TDE in alga at the physiological(algal growyth),biochemical(chlorophyll-a(Chl-a) synthesis and superoxide dismutase(SOD) activity) and structural(cell membrane integrity) level were investigated.Then we further study the relationship among toxicity indicators at physiological and biochemical level,and supplemented by research on algal biomacromolecules.According to the analysis of various endpoints of the alga,the general sensitivity sequence of toxicity endpoints of Scenedesmus obliquus was:SOD activity Chl-a synthesis algal growth.The stimulation rate of SOD activity increased from day 3(57.25%~83.02%) to day 6(57.25%~103.81%),and then decreased on day 15(-4.23%~-32.96%),which indicated that the antioxidant balance system of the algal cells was destroyed.The rate of Chl-a synthesis inhibition increased gradually,reaching19.70%~79.39% on day 15,while the rate of growth inhibition increased from day 3(-12.90%~10.16%) to day 15(-21.27%~72.46%).Moreover,the algal growth inhibition rate was positively correlated with the inhibition rate of SOD activity or Chl-a synthesis,with the correlation coefficients were 0.6713 and 0.5217,respectively.Algal cells would be stimulating to produce excessive reactive oxygen species,which would cause peroxidation in the cells,thereby destroying chloroplasts,inhibiting chlorophyll synthesis and reducing photosynthesis.With increasing exposure time,irreversible damage to algae can lead to death.This study is expected to enhance our understanding of the ecological risks through algal tests caused by TDE.  相似文献   
2.
TiO_2 nanoparticles(NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO_2 NPs on a marine microalgae Isochrysis galbana were investigated. The aggregation kinetics of TiO_2 NPs under different conditions was also investigated to determine and understand these effects. Results showed that, though TiO_2 NPs had no obvious impact on the size and reproducibility of algal cells under testing conditions, they caused a negative effect on algal chlorophyll, which led to a reduction in photosynthesis. Furthermore, fast aggregation of TiO_2 NPs occurred under all conditions, especially at the pH close to the p Hzpc. Increasing ionic strength and NP concentration also enhanced the aggregation rate.The aggregation and the following sedimentation of TiO_2 NPs reduced their adverse effects on I. galbana.  相似文献   
3.
Hazard classification of waste is a necessity, but the hazard properties (named “H” and soon “HP”) are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors.In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>1 0 0).Data for 45 wastes – documented with extensive chemical analysis and flammability test – were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values.This data set showed HP 14 ‘Ecotoxic chronic’ is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 ‘Carcinogenic’. The third most frequent hazard is HP 10 ‘Toxic for reproduction’ and the fourth most frequent hazard is HP 4 “Irritant – skin irritation and eye damage”. In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties.The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified.  相似文献   
4.
The gold nanoparticles (Au-NPs) are being increasingly used because of their huge diversity of applications, and consequently, elevated levels in the environment are expected. However, due to their physico-chemical properties and functionalization a high variety of Au-NPs can be found, and complete toxicological information for each type of Au-NPs still lacks, and even, the toxicological information for the same species is sometimes contradictory. Therefore, hazard assessment should be done case by case. Hence, the objective of this study was to obtain ecotoxicological information of the same Au-NPs in aquatic organisms and to find a rationale for Au-NPs toxicity. For such a purpose, bare and hyaluronic acid capped Au-NPs (12.5 nm) along with Au-NPs bulk material were tested on freshwater algae, Daphnia and zebrafish. Results showed that while gold nanoparticles were found to be harmless to the tested organisms, the soluble gold showed to be toxic to algae and Daphnia, with an LC50 between 1 and 2 mg L−1. Comparing our results with those gathered in the literature, it appears that a common hazard assessment of Au-NPs on the studied organisms can be elucidated.  相似文献   
5.
Ecotoxicity evaluation of selected sulfonamides   总被引:6,自引:0,他引:6  
Sulfonamides (SAs) are a group of antibiotic drugs widely used in veterinary medicine. The contamination of the environment by these pharmaceuticals has raised concern in recent years. However, knowledge of their (eco)toxicity is still very basic and is restricted to just a few of these substances. Even though their toxicological analysis has been thoroughly performed and ecotoxicological data are available in the literature, a systematic analysis of their ecotoxicological potential has yet to be carried out. To fill this gap, 12 different SAs were chosen for detailed analysis with the focus on different bacteria as well as non-target organisms (algae and plants). A flexible (eco)toxicological test battery was used, including enzymes (acetylcholinesterase and glutathione reductase), luminescent marine bacteria (Vibrio fischeri), soil bacteria (Arthrobacter globiformis), limnic unicellular green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor), in order to take into account both the aquatic and terrestrial compartments of the environment, as well as different trophic levels. It was found that SAs are not only toxic towards green algae (EC50 = 1.54-32.25 mg L−1) but have even stronger adverse effect on duckweed (EC50 = 0.02-4.89 mg L−1) than atrazine - herbicide (EC50 = 2.59 mg L−1).  相似文献   
6.
The classic Microtox® solid phase assay (MSPA) based on the inhibition of light production of the marine bacteria recently renamed Aliivibrio fischeri suffers from various bias and interferences, mainly due to physico-chemical characteristics of the tested solid phase. To precisely assess ecotoxicity of sediments, we have developed an alternative method, named Microtox® leachate phase assay (MLPA), in order to measure the action of dissolved pollutants in the aqueous phase. Two hypotheses were formulated to explain the observed difference between MSPA and MLPA results: a real ecotoxicity of the solid phase or the fixation of bacteria to fine particles and/or organic matter. To estimate the latter, flow cytometry analyses were performed with two fluorochromes (known for their ability to stain bacterial DNA), allowing correction of MSPA measurements and generation of new (corrected) IC50. Comparison of results of MLPA with the new IC50 MSPA allows differentiating real ecotoxic and fixation effect in classic MSPA especially for samples with high amount of fines and/or organic matter.  相似文献   
7.
8.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   
9.
Animal wastes from intensive farming are generally collected for field fertilisation. They may contain drugs that can become soil pollutants. To evaluate the possible effects of such contamination in terrestrial systems, sulphadimethoxine has been subjected to laboratory tests (in vitro, synthetic medium, and soil) using seeds of barley (Hordeum distichum L.). The drug suppressed normal post-germinative development and growth of roots and leaves in both test conditions; this effect was dependent on the bioaccumulation rate, which was higher on synthetic medium than in soil. Bioaccumulation was higher in roots than foliage and this was markedly evident in soil and, in particular, in soils with a low humus content. The environmental risk of sludge application on soils and the possible contamination of food chains are discussed.  相似文献   
10.
替代脊椎动物进行化学物质和污染物危害评估的方法已成为越来越重要的需求。现在首先要考虑的是当启动一个脊椎动物生态毒性测试,必须确保不必要的脊椎动物生物的使用尽可能最小化。对于一些监管目的,脊椎动物的使用对环境风险评估(ERA)已经被禁止,而在其他情况下生物测试的数量已经大大减少了,或者测试程序严格精简了。然而,想要获得能够完全替代脊椎动物提供环境危害数据的方法仍有很长的路要走。动物替代品的发展不仅仅是基于道德的考虑,也可以降低执行脊椎动物生态毒性测试的成本以及在某些情况下能够提供更好的信息旨在改进环境风险评估。本文集中综述了在过去的几十年里生态毒性评估替代方法所发生的重大的进展。
精选自Adam Lillicrap, Scott Belanger, Natalie Burden, David Du Pasquier, Michelle R. Embry, Marlies Halder, Mark A. Lampi, Lucy Lee, Teresa Norberg-King, Barnett A. Rattner, Kristin Schirmer, Paul Thomas. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: a review of developments over the last two decades and current status. Environmental Toxicology and Chemistry: Volume 35, Issue 11, pages 2637–2646, November 2016. DOI: 10.1002/etc.3603
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3603/full
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号