首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
综合类   1篇
污染及防治   1篇
灾害及防治   1篇
  2010年   1篇
  2006年   1篇
  2003年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 195 毫秒
1
1.
For more than a decade, anthropogenic sulfur (S) and nitrogen (N) deposition has been identified as a key pollutant in the Arctic. In this study new critical loads of acidity (S and N) were estimated for terrestrial ecosystems north of 60° latitude by applying the Simple Mass Balance (SMB) model using two critical chemical criteria (Al/Bc = 1 and ANCle = 0). Critical loads were exceeded in large areas of northern Europe and the Norilsk region in western Siberia during the 1990s, with the more stringent criterion (ANCle = 0) showing the larger area of exceedance. However, modeled deposition estimates indicate that mean concentrations of sulfur oxides and total S deposition within the Arctic almost halved between 1990 and 2000. The modeled exceeded area is much reduced when currently agreed emission reductions are applied, and almost disappears under the implementation of maximum technically feasible reductions by 2020. In northern North America there was no exceedance under any of the deposition scenarios applied. Modeled N deposition was less than 5 kg ha−1 y−1 almost across the entire study area for all scenarios; and therefore empirical critical loads for the eutrophying impact of nitrogen are unlikely to be exceeded. The reduction in critical load exceedances is supported by observed improvements in surface water quality, whereas the observed extensive damage of terrestrial vegetation around the mining and smelter complexes in the area is mainly caused by direct impacts of air pollution and metals.  相似文献   
2.
Ammonia (NH3) is emitted mainly from agricultural practices, with NH3 concentrations decreasing rapidly away from sources. As a consequence there is a high spatial variability in nitrogen deposition and its consequent ecological effects in agricultural landscapes that is in addition to differences in sensitivity between habitat types. This variability points to the potential to include spatial planning measures as part of strategies to protect sensitive vegetation from ammonia deposition.National abatement policies typically include uniform recommendations for technical abatement measures, such as ploughing in manures after land spreading. In this study, the complementary potential of spatial planning to reduce effects on target locations is analysed through model scenarios for an example landscape in central England. Scenarios included defining buffer zones of low-emission agriculture and establishing tree belts surrounding either emission sources or priority areas for the protection of semi-natural habitats.The analysis showed that tree belts can reduce deposition to sensitive areas, with trees surrounding the sensitive habitats being more effective than trees around the sources. Low emission buffer zones around sink areas also result in useful reductions in N deposition. Smaller nature reserve sites benefit to a greater degree from such spatial planning measures, as large reserves can provide their own buffer zone to some degree. Similarly, relocating point sources or using planning policies to ensure the location of large NH3 point sources are at least 2–3 km from the sensitive habitats results in substantial reductions in N deposition.  相似文献   
3.
城市火灾危险性分析   总被引:14,自引:5,他引:14  
本文提出了一个城市火灾危险性分析的一般模型。通过对实际火灾案例的统计分析,提出了火灾发生率的主导统计参数。并提出以超越概率曲线的方法来表达火灾危险性分析的结果。经验证,该模型具有可操作性,结论可信。  相似文献   
4.
/ The main objectives of this study were to identify the regions inFennoscandia where the critical loads of sulfur (S) and acidifying nitrogen(N) for lakes are exceeded and to investigate the consequences for depositionreductions, with special emphasis on the possible trade-offs between S and Ndeposition in order to achieve nonexceedance. In the steady-state model forcalculating critical loads and their exceedances, all relevant processesacting assinks for N and S are considered. The critical loads of N and S areinterrelated (defining the so-called critical load function), and therefore asingle critical load for one pollutant cannot be defined without makingassumptions about the other. Comparing the present N and S deposition withthe critical load function for each lake allows determination of thepercentage of lakes in the different regions of Fennoscandia where: (1) Sreductions alone can achieve nonexceedance, (2) N reductions alone aresufficient, and (3) both N and S reductions are required but to a certaindegree interchangeable. Secondly, deposition reduction requirements wereassessed by fixing the N deposition to the present level, in this wayanalyzing the reductions required for S, and by computing the percentage oflakes exceeded in Finland, Norway and Sweden for every possible percentdeposition reduction in S and N, in this way showing the (relative)effectiveness of reducing S and/or N deposition. The results showed clearregional patterns in the S and N reduction requirements. In practically thewhole of Finland and the northern parts of Scandinavia man-made acidificationof surface waters could be avoided by reducing S deposition alone. In thesouthern parts of Sweden some reductions in N deposition are clearly neededin addition to those for S. In southern Norway strong reductions are requiredfor both N and S deposition.KEY WORDS: Acidification; Critical load; Exceedance; Sulfur; Nitrogen;Deposition; Lake  相似文献   
5.
Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US $223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号