首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
安全科学   10篇
环保管理   1篇
综合类   1篇
污染及防治   12篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Waste generation and accumulating quantities of oil field waste are a matter of environmental concern. This study proposes the Slurry Fracture Injection (SFI) technique as an alternative waste disposal method. The slurried solids injection waste disposal method is environmentally secure and permanent, leaving no future liabilities that must be risk-evaluated or priced. An entire waste stream comprising ground solids and waste water can be injected into deep and hydraulically secure target strata with no contamination of potable water-bearing formations or formations outside the target zone that may contain resources (gas and oil). The slurry injection method can be used to clean and reclaim landfills, oil pits and granular waste dumps. This article proposes a two-tier screening method for evaluating the feasibility of this technique and the identification of suitable target zones. A stringent environmental and process control monitoring program should complement the planning and operational period to ensure environmental protection, waste containment, and regulatory HSE compliance.  相似文献   
2.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   
3.
文章以国内典型压力容器用材245R为例,采用GB/T19624~断裂力学评价方法对于《压力容器定期检验规程》表5、表6中的超标非圆形缺陷可接受准则的安全裕度进行评价,评价结果表明其中可接受准则的部分规定不够保守,就此作者给出相关的修改建议。  相似文献   
4.
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model.  相似文献   
5.
An experimental study of the transport properties of fluid-saturated joints composed of two complementary rough fracture surfaces, translated with respect to each other and brought in contact, is reported. Quantitative roughness measurements on different fractured granite samples show that the surfaces have a self-affine geometry from which the dependence of the mean aperture on the relative displacement of fracture surfaces kept in contact can be predicted. Variations of the hydraulic and electrical conductances of the joint are measured as functions of its mean aperture. A simple parallel plane model accounts for the global trend of the measurements, but significant deviations are observed when a relative lateral displacement of the surfaces is introduced. A theoretical analysis of their origin shows that they are due both to the randomness of the aperture field and to a nonzero local slope of the surface near the injection hole; the corresponding conductivity fluctuation amplitudes have power law and linear variations with the lateral displacement, and are enhanced by the radial injection geometry.  相似文献   
6.
Solute transport in fractured rocks is of major interest in many applications, from the petroleum industry to ground water management. This work focuses on the dispersion process in a transparent replica of a real single fracture. The fracture exhibits strong changes in heterogeneity, with the first half very heterogeneous and the second half fairly homogeneous. Three models have been used to interpret the tracer experiments: the classical advection-dispersion equation (ADE), the continuous time random walk (CTRW), and the stratified model. The main goals were to test these models and to study possible correlations between fitting parameters and heterogeneities. As expected, the solution derived from the ADE equation appears to be unable to model long-time tailing behavior. On the other hand, the results confirm the CTRW robustness and the coefficient beta seems well correlated to heterogeneities. Finally, the stratified model is also able to describe non-Fickian dispersion. The parameters defined by this model are correlated to the heterogeneities of the fracture.  相似文献   
7.
Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.  相似文献   
8.
In fractured rocks with a porous rock matrix such as granites, radionuclides will flow with the water in the fracture network. The nuclides will diffuse in and out the rock matrix where they can sorb and be considerably retarded compared to the water velocity. A water parcel entering the network will mix and split at the fracture intersections and parts of the original parcel will traverse a multitude of different fractures. The flowrates, velocities, sizes and apertures of the fractures can vary widely. Normally one must solve the transport equations for every fracture and use the effluent concentration as inlet condition to the next fracture and so on. It is shown that under some weakly simplified conditions it suffices to determine one single parameter group containing information on the flow wetted surface that a water parcel contacts along the entire path. It is also shown how this can be obtained. Then, solving the transport equations only once for time and location along the path gives the concentration and nuclide flux of every nuclide in the chain everywhere along a path. The same solution actually is valid for every path in the network. This dramatically reduces the computation effort. The same approach can be used for models based on streamtubes.  相似文献   
9.
Effects of pore volume-transmissivity correlation on transport phenomena   总被引:2,自引:0,他引:2  
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.  相似文献   
10.
波纹补偿器爆裂事故,经济损失严重。用事故树方法进行定性分析,找出发生事故的主要原因,从安全设施、生产管理、安全管理方面采取防范措施,防止事故的重复发生。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号