首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   2篇
综合类   8篇
基础理论   7篇
污染及防治   21篇
评价与监测   2篇
社会与环境   1篇
  2020年   2篇
  2017年   2篇
  2014年   2篇
  2013年   10篇
  2012年   1篇
  2011年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有39条查询结果,搜索用时 296 毫秒
1.
Abstract

The occurrence of agricultural pesticides in surface waters around the USA has created a concern over the status of safe drinking water. Solid‐phase extraction (SPE) or liquid‐liquid extraction (LLE) is usually employed to concentrate trace levels of pesticides in water samples to concentrations that are measurable with advanced chromatographic instruments. We describe here a SPE and capillary gas chromatographic (GC) procedure to extract and concentrate trace levels of select agricultural pesticides and metabolites from stream water. Our SPE and GC method provides high sensitivity, with recoveries between 85% to 95%, and high reproducibility for 9 of the pesticides studied. The described method provided marginal recoveries of 19 and 60% for the atrazine metabolites.  相似文献   
2.
Applications of thin layer chromatography and high performance thin layer chromatography for the separation, detection, and qualitative and quantitative determination of pesticides, other agrochemicals, and related compounds are reviewed for the period from July 1, 2004 to November 1, 2006. Analyses are covered for a variety of samples, such as food, crops, biological, environmental, pharmaceuticals, and formulations, and for residues of pesticides of various types, including insecticides, herbicides, and fungicides, belonging to different chemical classes. In addition to references on residue analysis, studies such as pesticide-structure relationships, metabolism, degradation, and lipophilicity are covered, many of which make use of thin layer radiochromatography.  相似文献   
3.
The benzonitriles dichlobenil, bromoxynil and ioxynil are important broad-spectrum or selective herbicides used in agriculture, orchards and public areas worldwide. The dichlobenil metabolite 2,6-dichlorobenzamide is the most frequently encountered groundwater contaminant in Denmark, which suggests that the environmental fate of these three structurally related benzonitrile herbicides should be addressed in detail. This review summarises the current knowledge on microbial degradation of dichlobenil, bromoxynil and ioxynil with particular focus on common features of degradation rates and pathways, accumulation of persistent metabolites and diversity of the involved degrader organisms.  相似文献   
4.
For elucidation of the metabolism of the endocrine disruptor nonylphenol by Sphingomonas sp. strain TTNP3, the degradation of an isomer of nonylphenol, 4(2,6-dimethyl-2-heptyl)-phenol, has been studied. As in the case of 4(3,5-dimethyl-3-heptyl)-phenol, the metabolism of this nonylphenol isomer leads to the formation of the NIH-shifted product 2(2,6-dimethyl-2-heptyl)-1,4-benzenediol (NIH: National Institute of Health), but also to the alkoxy derivative 4(2,6-dimethylheptan-2-yloxy)phenol as additional metabolite. To the best of our knowledge, this is the first report describing the formation of alkoxyphenol as a degradation product of nonylphenol. Additionally, these results provide for the first time evidence for slight differences in the biodegradation of the isomers of nonylphenol.  相似文献   
5.
Part V—sorption of pharmaceuticals and personal care products   总被引:5,自引:0,他引:5  
Background, aim, and scope  Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features  We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed. Results  Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion  Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions  Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives  More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.  相似文献   
6.
Wang X  Liu X  Wang H  Dong Q 《Chemosphere》2007,67(11):2156-2162
A species of bacteria that is capable of utilizing imazaquin as the sole carbon source was isolated from soil with repeated imazaquin applications, and was identified as Arthrobacter crystallopoietes (designated as strain “WWX-1”). This isolate degrades imazaquin as high as 200 μg ml−1, and the estimated dissipation half-lives increased from 1.51 d for the treatment at 50 μg ml−1 to 4.75 d for 200 μg ml−1. Optimal growth of WWX-1 in mineral salt medium with 50 μg ml−1 imazaquin was obtained at 35 °C and a pH of 5.0. Growth of WWX-1 was also observed in mineral salt medium with the addition of other imidazolinone herbicides such as imazethapyr and imazapyr, but not with different classes of herbicides such as metsulfuron-methyl. Two imazaquin metabolites were detected, and spectral analysis with HPLC–MS, 1H NMR, and IR revealed one metabolite with a molecular weight (MW) of 199 as quinoline-2,3-dicarboxylic anhydride. We propose that A. crystallopoietes (WWX-1) could serve as an efficient biodegradation system for remediation of water and soils that are heavily contaminated with imazaquin or other structurally similar chemicals.  相似文献   
7.
Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A(TBBPA) was successfully acclimated in an anaerobic reactor over 280 days. During the period from 0 to 280 days, the TBBPA degradation rate(DR), utilization of glucose, and VSS were monitored continuously. After 280 days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20 days of treatment in batch experiments. Based on scanning electron microscopy(SEM) observations and denaturing gradient gel electrophoresis(DGGE) determinations,the diversity of the microorganisms after 0 and 280 days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol,3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A,were identified by gas chromatography–mass spectrometry(GC–MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model.Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions.  相似文献   
8.
Degradation studies in soil of the insecticides aldicarb and carbofuran and their metabolites (aldicarb sulfoxide, aldicarb sulfone; 3-ketocarbofuran and 3-hydroxycarbofuran) were carried out using laboratory systems under controlled conditions (temperature, water content, light). The insecticides were added to soil samples and subsamples of the soil were analyzed at different times to assess both the bacterial abundance and the concentration of the different chemicals. The epifluorescence direct count method was applied to the subsamples to estimate microorganism numbers (N/g soil). Untreated samples of soil were used as controls for evaluating the effects of the application of the insecticides on microbial abundance. Subsamples treated with the pesticides were analyzed using HPLC and the DT 50 s of the different compounds studied were calculated. The DT 50 values show that neither the parent compounds nor the transformation products have a high persistence in soil and there is a general increase in the concentration of microorganisms as the pesticides diminish.  相似文献   
9.
Background, aim and scope  Nonylphenol (NP) can be detected in the aquatic environment all over the world. It is applied as a technical mixture of isomers of which 353-NP is the most relevant both in terms of abundance (about 20% of total mass) and endocrine potential. 353-NP is metabolised in sewage sludge. The aims of the present study were to determine and to compare the acute toxicity of t-NP, 353-NP and its metabolites as well as to discuss if the toxicity of 353-NP changes during degradation. Materials and methods  353-NP and two of its metabolites were synthesised. The zebrafish embryo test was performed according to standard protocols. Several lethal and non-lethal endpoints during embryonal development were reported. NOEL, LOEL and EC50 were calculated. Results  All tested compounds caused lethal as well as non-lethal malformations during embryo development. 353-NP showed a higher toxicity (EC50 for lethal endpoints 6.7 mg/L) compared to its metabolites 4-(3.5-dimethyl-3-heptyl)-2-nitrophenol (EC50 13.3 mg/L) and 4-(3,5-dimethyl-3-heptyl)-2-bromophenol (EC50 27.1 mg/L). Discussion  In surface water, concentrations of NP are far below the NOEC identified by the zebrafish embryo test. However, in soils and sewage sludge, concentrations may reach or even exceed these concentrations. Therefore, sludge-treated sites close to surface waters should be analysed for NP and its metabolites in order to detect an unduly high contamination due to runoff events. Conclusions  The results of the present study point out that the toxicity of 353-NP probably declines during metabolisation in water, sediment and soil, but does not vanish since the major metabolites exhibit a clear toxic potential for zebrafish embryos. Recommendations and perspectives  Metabolites of environmental pollutants should be included in the ecotoxicological test strategy for a proper risk assessment. An erratum to this article can be found at  相似文献   
10.
Biodegradation mechanisms were elucidated for three dibenzoate plasticizers: diethylene glycol dibenzoate (D(EG)DB), dipropylene glycol dibenzoate (D(PG)DB), both of which are commercially available, and 1,6-hexanediol dibenzoate, a potential green plasticizer. Degradation studies were done using Rhodococcus rhodochrous in the presence of pure alkanes as a co-substrate. As expected, the first degradation step for all of these systems was the hydrolysis of one ester bond with the release of benzoic acid and a monoester. Subsequent biodegradation of the monobenzoates of diethylene glycol (D(EG)MB) and dipropylene glycol (D(PG)MB) was very slow, leading to significant accumulation of these monoesters. In contrast, 1,6-hexanediol monobenzoate was quickly degraded and characterization of the metabolites indicated that the biodegradation proceeded by way of the oxidation of the alcohol group to generate 6-(benzoyloxy) hexanoic acid followed by β-oxidation steps. This pathway was blocked for D(EG)MB and D(PG)MB by the presence of an ether function.The use of a pure hydrocarbon as a co-substrate resulted in the formation of another class of metabolites; namely the esters of the alcohols formed by the oxidation of the alkanes and the benzoic acid released by hydrolysis of the original diesters. These metabolites were biodegraded without the accumulation of any intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号