全文获取类型
收费全文 | 4674篇 |
免费 | 3260篇 |
国内免费 | 459篇 |
专业分类
安全科学 | 121篇 |
废物处理 | 179篇 |
环保管理 | 361篇 |
综合类 | 4772篇 |
基础理论 | 1283篇 |
污染及防治 | 1147篇 |
评价与监测 | 438篇 |
社会与环境 | 87篇 |
灾害及防治 | 5篇 |
出版年
2025年 | 87篇 |
2024年 | 260篇 |
2023年 | 318篇 |
2022年 | 397篇 |
2021年 | 387篇 |
2020年 | 351篇 |
2019年 | 342篇 |
2018年 | 347篇 |
2017年 | 334篇 |
2016年 | 425篇 |
2015年 | 349篇 |
2014年 | 338篇 |
2013年 | 507篇 |
2012年 | 424篇 |
2011年 | 473篇 |
2010年 | 327篇 |
2009年 | 299篇 |
2008年 | 275篇 |
2007年 | 322篇 |
2006年 | 279篇 |
2005年 | 205篇 |
2004年 | 182篇 |
2003年 | 237篇 |
2002年 | 169篇 |
2001年 | 150篇 |
2000年 | 112篇 |
1999年 | 97篇 |
1998年 | 89篇 |
1997年 | 70篇 |
1996年 | 54篇 |
1995年 | 40篇 |
1994年 | 43篇 |
1993年 | 29篇 |
1992年 | 23篇 |
1991年 | 14篇 |
1990年 | 5篇 |
1989年 | 7篇 |
1988年 | 4篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1981年 | 3篇 |
1977年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有8393条查询结果,搜索用时 0 毫秒
1.
湿地植物在处理高负荷有机废水时会受到不同程度的氧化胁迫。本研究基于对浮萍的有机污染胁迫模拟系统,通过对浮萍脂质过氧化和抗氧化防御系统的监测与分析,研究了浮萍对有机污染胁迫的耐受能力及胁迫去除后浮萍的恢复规律。结果表明,浮萍对有机污染胁迫具有较高的耐受性,在胁迫去除后,具有一定的恢复能力。在COD小于400mg/L时,浮萍并未受到氧化胁迫;当COD达到800 mg/L时,浮萍体内ROS含量上升,细胞膜脂过氧化加剧,但抗氧化酶活性升高,抗氧化物质含量增加,浮萍可保持生长,胁迫去除后,抗氧化防御系统可恢复到对照水平;当COD过高(≥1 000mg/L),ROS急剧上升,抗氧化防御系统遭受破坏,造成不可逆伤害,胁迫去除后不能恢复正常生长。 相似文献
2.
辛醇/水分配系数是表征有机污染物环境行为的重要参数之一,本文应用于碎片常数计算了130余个有机化合物的辛醇/水分配系数对数值,通过计算值与实测值的比较发现,两者之间表现出相当好的一致性,其平均绝对误差为0.135,此外,还探讨了该方法应用于不同类型有机污染物时需要注意的问题。 相似文献
3.
江苏省是长江三角洲的重要组成,近年来以臭氧(O3)和细颗粒物(PM2.5)为特征的区域复合型污染突出。挥发性有机物(VOCs)是O3和PM2.5的重要前体物。2020年4月、8月和2021年1月在江苏省13个城市开展大气VOCs样品离线同步观测,在此基础上分析了江苏省大气VOCs的浓度水平、化学组成和空间分布。整体来看,全省平均VOCs体积分数为40.3×10-9,其中烷烃(41.8%)是主要贡献者,其次为含氧有机物(16.6%)、芳香烃(12.5%)、卤代烃(12.9%)和烯烃(9.6%)。从具体城市来看,VOCs高值区主要集中在苏南及苏中地区,呈现出明显的“南高北低”的区域分布特征,排名前3的城市分别为常州(52.0×10-9)、泰州(49.8×10-9)和苏州(45.2×10-9)。臭氧生成潜势(OFP)表明,芳香烃和烯烃是对江苏省O3生成贡献最大的组分,OFP排名前3的组分均包括间/对二甲苯、甲苯和乙烯。利用正交矩阵因子(PMF)模型对江苏省VOCs进行来源解析,共解析出5个因子。工业排放是主要贡献者(40.1%),之后依次为机动车尾气(33.0%)、溶剂与涂料使用(15.9%)、油气挥发(8.4%)和天然源(2.6%)。对于省内各市而言,VOCs来源结构具有差异。常州、苏州工业排放源相对贡献最高;连云港、徐州、扬州和淮安的机动车尾气相对贡献较高;溶剂与涂料使用和油气挥发对各市VOCs贡献较低。优先控制交通相关排放和工业相关排放能够有效地控制长三角中部地区的大气O3和PM2.5污染问题。 相似文献
4.
为探索西安市区主要大气污染物暴露水平及健康风险状况,基于空气质量监测数据和问卷调查数据,使用GIS方法、美国国家环境保护局健康风险评价模型和多元线性回归模型,对2015—2020年西安市区6种主要大气污染物(PM2.5、PM10、SO2、NO2、CO和O3)的时间和空间变化特征,以及年均健康风险、季均健康风险及其影响因素进行了分析和评价。结果表明:①西安市区2015—2020年PM2.5、PM10和NO2年均浓度值均超出了环境空气质量二级标准。除O3外,其余5种污染物的年均浓度在2020年最小,整体呈下降趋势,说明西安市区空气质量逐年好转。②PM2.5、PM10、CO的空间分布特征基本一致,SO2和O3的空间分布特征基本一致。经开区和阎良区监测点空气污染较严重,兴庆小区(碑林区)和曲江文化产业集团(曲江新区)监测点空气质量相对较好。③PM2.5、PM10、SO2、NO2和CO等5种污染物的非致癌风险指数(HI)在冬季最高,在夏季最低;O3的HI在夏季最高,在冬季最低。在冬季,PM2.5和PM10的HI平均值均大于1,存在非致癌健康风险;SO2、NO2、CO和O3等4种污染物的HI平均值均小于1,不存在非致癌健康风险。在夏季,O3存在一定的非致癌健康风险,超阈值天数占4%;其余5种污染物的HI平均值和最大值均小于1,不存在非致癌健康风险。从年均值来看,6种污染物的HI年均值均小于1,不存在非致癌健康风险。④男性、户外劳动者和老年人面临更高的大气污染物健康风险。 相似文献
5.
溶解有机质(DOM)参与湖泊元素生物地球化学循环,为微生物生存代谢提供能量来源和物质基础,与微生物之间存在复杂的相互关系。文章综述了DOM表征手段,阐述了湖泊微生物与DOM相互作用关系及其代谢机制,探讨了在气候变化背景下湖泊微生物与DOM对气温升高、盐化、富营养化等关键环境因子的响应。未来需进一步开展陆源DOM输入对湖泊生态系统影响研究,探究湖泊碳库的形成过程及其机制,揭示微生物作用对湖泊碳储存的影响,深化对湖泊生态系统固碳潜力的认识。 相似文献
6.
染料废水含有大量难降解有机污染物,其中的有机卤代物通常具有较大的毒性和生态风险,但这类物质在常规的生物处理和化学处理工艺中的去除效果不佳。针对染料废水的脱卤困境,研究采用UV/SO32-高级还原工艺对染料废水进行还原脱卤。在初始pH为8.5,SO32-投加量为40 mmol·L-1的条件下,废水中52.2%的可吸附有机卤素(adsorbable organic halogens,AOX)可以在反应开始6 h后被去除,更高的初始pH和更大的SO32-投加量均有利于提升AOX的去除率。中间体的定性和半定量研究揭示了染料废水中部分氯代苯胺类物质的还原脱卤路径,发现苯胺很可能是这些物质还原脱卤的主要产物。废水中有机物的平均预测毒性揭示了还原过程中废水急性毒性的变化趋势。这一趋势与T3发光杆菌和小球藻的急性毒性评价结果一致。此外,染料废水的AOX浓度与T3发光杆菌的发光抑制率呈现正相关关系,而且染料废水经过还原脱卤后,尽管水中盐含量有所增加,其EC50由1.26 mg·L-1增加到5.94 mg·L-1,这也证明了还原脱卤过程可以降低出水的急性毒性。因此,UV/SO32-过程可以通过对水中有机卤代物的还原脱卤降低出水中的AOX,降低废水急性毒性和生态风险。 相似文献
7.
8.
Tienan Ju Mei Lei Guanghui Guo Jinglun Xi Yang Zhang Yuan Xu Qijia Lou 《Frontiers of Environmental Science & Engineering》2023,17(1):8
9.
Zhen Cheng Xinghua Qiu Xiaodi Shi Xing Jiang Tong Zhu 《Frontiers of Environmental Science & Engineering》2023,17(4):45
10.
Earl B. Alexander 《Environmental management》1988,12(6):791-796
Excessive soil losses due to erosion or lateral displacement by machinery impair productivity. Some soil loss is tolerable, but not so much that plant productivity diminishes. Thus productivity is the dominant concern in determining soil-loss tolerance. The effects of soil loss on productivity, however, are difficult to determine. Therefore, two alternatives are discussed for determining the limits of soil loss, or soil-loss tolerance. These alternatives are the maintenance of soil organic matter and, for shallow and moderately deep soils, the maintenance of soil depth. They are not new strategies, but our rapidly increasing knowledge of the dynamics of soil organic matter and the rates of soil formation from bedrock or consolidated sediments warrants the reconsideration of these alternatives. Reductions in either soil organic matter or the depth of shallow or moderately deep soils will lead to declining productivity. Soil organic matter, considered to be a surrogate for productivity, is much easier to monitor than is productivity. Also, there are many computer models for predicting the effects of management on soil organic matter. Recently compiled data on rates of soil formation suggest that soil losses of 1 t/a (2.24 Mg/ha yr) are greater than the rate of replenishment by the weathering of lithic or paralithic material in all but very wet climates. 相似文献