首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A hydromechanical principle for particle retention in Mytilus edulis and other ciliary suspension feeders
Authors:C Barker Jørgensen
Institution:(1) Zoophysiological Laboratory, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
Abstract:It is generally thought that the laterofrontal cirri of the bivalve gill act as filters that retain suspended particles in the through current and transfer the particles onto the frontal surface of the gill filaments. In Mytilus edulis calculations indicated that if water passed between the branching cilia of the cirri that are assumed to constitute the filter the pressure drop needed would amount to about 10 times the actual pressure drop across the whole gill. Thus, instead of acting as filters the laterofrontal cirri seem to move water. Presumably, the cirri together with the frontal cilia produce the water currents along the frontal surface of the gill filaments. Particle retention in the bivalve gill implies the transfer of suspended particles from the current of water about to enter an interfilamentar space into a neighbouring frontal surface current. The complex three-dimensional pattern of flow that arises where the 2 systems of current meet is characterized by steep velocity gradients. Particles that enter such steep, steady velocity gradients become exposed to transverse forces that cause the particles to migrate perpendicularly to the direction of flow. Whether particles enter the surface current, i.e. are retained, or they stay within the through current andescape, depends primarily upon particle size, and upon the steepness and height of the gradients within the boundary zone between the surface current and through current. Further studies are needed to evaluate the capacities and relative importance of this hydromechanical particle-trapping mechanism in suspension feeding bivalves. It is suggested that in downstream particle-retaining systems, e.g. on the tentacles of polychaetes and entoprocts, velocity gradients between through currents and surface currents also act as the particle-collecting mechanism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号