摘 要: | 针对采空区危险性评价的影响因素众多且关系复杂的特点,提出了基于AGA-BP神经网络算法评价采空区危险性。将岩体结构、地质构造、岩石抗压强度等13个影响因子作为神经网络输入,采空区危险性等级作为输出,建立一个采空区危险性评价的BP神经网络模型;采用自适应遗传算法(AGA)对BP网络的初始权值和阈值进行全局寻优,将寻优结果回代入网络中进行训练并预测得出采空区危险性等级;利用其它智能算法与该预测结果做出比较,以验证AGA-BP算法的有效性及优越性。结果表明:该算法的优化效果明显,同时在训练时间与预测精度上较其它智能算法有突出的优势,是一种在采空区危险性评价方面值得推广的新方法。
|