首页 | 本学科首页   官方微博 | 高级检索  
     


Desulfurization of coke oven gas from the coking of coking coal blended with a sorbent and waste plastic
Authors:Zhao Rongfang  Ye Shufeng  Xie Yusheng  Chen Yunfa
Affiliation:(1) Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100080, China;(2) Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
Abstract:
A new way to implement the simultaneous reutilization of solid waste, the desulfurization of coke oven gas (COG), and even the desulfurization of coke by the co-coking of coking coal (CC) and waste plastic (WP) blended with a sorbent is proposed; the evolution of H2S and the removal efficiency of H2S from COG during the co-coking process were investigated in a lab-scale cylindrical reactor. The experimental results indicated that for the coking of CC blended with ZnO, Fe2O3, or blast furnace dust (BFD) as a sorbent, the instantaneous concentration of H2S in COG was lower than 500 mg/m3 (which meets the technical specification requirement of the Chinese Cleaner Production Standard–Coking Industry, HJ/T 126-2003) when the molar ratio between the key component of the sorbent and the volatile S in CC or the CC/WP blend, n Zn+Fe/n S, was about 1.2 for ZnO and Fe2O3, but not for BFD under the same conditions, suggesting that ZnO and Fe2O3 are promising sorbents, but that BFD must be treated chemical or thermally before being used as a sorbent because of the size and complicated nature of the influence of its phase/chemical composition on its desulfurization ability. However, for the co-coking of CC and WP blended with ZnO as a sorbent, n Zn+Fe/n S must increase to 1.4 and 1.7 for 100/2 and 100/5 blends of CC/WP, respectively, to ensure a satisfactory efficiency for H2S removal from COG. Part of this paper was presented at the International Symposium on EcoTopia Science 2005 (ISET05), Aug 8–9, 2005, Chikusa-ku, Nagoya, Japan
Keywords:Coking  Coking coal  Waste plastic  Sorbent  Desulfurization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号