首页 | 本学科首页   官方微博 | 高级检索  
     

常州市燃气管网破坏的人工神经网络预测模型
引用本文:朱庆杰,张建龙,陈艳华,赵炫皓,万永华. 常州市燃气管网破坏的人工神经网络预测模型[J]. 工业安全与环保, 2020, 0(2): 44-48
作者姓名:朱庆杰  张建龙  陈艳华  赵炫皓  万永华
作者单位:常州大学石油工程学院;华北理工大学建筑工程学院
基金项目:科技部国际合作司中国波兰双边政府间科技合作项目(2012—35—05);江苏省高校自然科学重点项目(16KJA170004)。
摘    要:
作为一种高效清洁的能源,燃气已经成为城市能源中的重要一员,燃气管网破坏亦成为城市所面临的重大安全隐患。城市埋地燃气管网的破坏风险,往往受到多种影响因素的共同作用。通过分析常州市埋地燃气管网破坏的影响因素,确定了地面沉降、地裂缝、城市内涝、土壤腐蚀等4个风险评价因子。运用MATLAB中的人工神经网络工具,通过人工神经网络计算,优化了模型网络结构,建立了常州市埋地燃气管网破坏风险预测的人工神经网络模型。分析计算结果,并为常州市埋地燃气管网的安全防护提供了建议。

关 键 词:城市燃气管网  人工神经网络  预测模型  评价因子  破坏概率

Artificial Network Prediction Model for Gas Pipeline Network Failure in Changzhou City
ZHU Qingjie,ZHANG Jianlong,CHEN Yanhua,ZHAO Xuanhao,WAN Yonghua. Artificial Network Prediction Model for Gas Pipeline Network Failure in Changzhou City[J]. Industrial Safety and Dust Control, 2020, 0(2): 44-48
Authors:ZHU Qingjie  ZHANG Jianlong  CHEN Yanhua  ZHAO Xuanhao  WAN Yonghua
Affiliation:(School of Petroleum Engineering,Changzhou University Changzhou,Jiangsu 213164)
Abstract:
As a kind of highly efficient and clean energy,gas has become an important part of urban energy,and the destruction of gas pipe network has also become a major problem facing cities.The risk of urban buried gas pipe network is often affected by many factors.Four risk assessment factors,such as ground subsidence and ground crack,are determined by analyzing the factors affecting the damage of buried gas pipe network in Changzhou.Using the artificial neural network tool in MATLAB,the model network structure is optimized through the artificial neural network calculation,and the artificial neural network model for the prediction of the damage risk of buried gas pipe network in Changzhou city is established.The results are analyzed and some suggestions are provided for the safety protection of buried gas pipe network in Changzhou city.
Keywords:gas  pipeline network  artificial neural network  predictive model  evaluation factor  failure probability
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号