首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The trophic status of herbivorous fishes on coral reefs
Authors:Email author" target="_blank">J?Howard?ChoatEmail author  William?D?Robbins  Kendall?D?Clements
Institution:(1) School of Marine Biology and Aquaculture, James Cook University, 4811 Townsville, Australia;(2) School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
Abstract:Estimates of feeding rates, alimentary tract structure and temporal patterns of food processing obtained from twelve species of nominally herbivorous fishes on the northern Great Barrier Reef were compared. These included members of the families Acanthuridae, Scaridae and Kyphosidae. Based on an analysis of diet and short-chain fatty acid (SCFA) profiles from a previous study we initially partitioned the twelve species into four dietary categories, as follows: (a) Category 1: herbivores with a diet of macroscopic brown algae and high SCFA profiles in the hindgut region (Naso unicornis, Kyphosus vaigiensis); (b) Category 2: herbivores feeding on turfing and filamentous red and green algae with moderate SCFA profiles in the hindgut region (N. tonganus, K. cinerascens, Zebrasoma scopas, Acanthurus lineatus); (c) Category 3: zooplankton feeders with moderate SCFA profiles (N. vlamingii, N. brevirostris); (d) Category 4: species feeding on detrital and sedimentary materials with low levels of SCFA (Chlorurus microrhinos, Scarus schlegeli, Ctenochaetus striatus, A. olivaceus). The purpose of this comparison was to determine whether measures of feeding activity, alimentary tract structure, and food processing were concordant with diet. A dichotomy in feeding rates was observed. Species with a diet of algae and zooplankton (categories 1–3) had slower feeding rates than those feeding on detrital aggregates and sediment (category 4). The pattern of food processing also followed the same dichotomy with species of categories 1–3 retaining food in the alimentary tract overnight and commencing the feeding day with substantial amounts of food in the intestine and hindgut. Category-4 species commenced the feeding day with empty alimentary tracts suggesting a rapid turnover of gut contents. Within the herbivorous and zooplankton-feeding species neither alimentary tract structure nor food processing mode were predicted by diet or SCFA profiles. A hindgut fermentation chamber was present in K. vaigiensis but not in N. unicornis, a species with high levels of SCFA in the hindgut region and a diet of brown macroscopic algae. In contrast N. vlamingii, with a diet dominated by animal matter, retained large amounts of food material in a hindgut chamber over the entire feeding cycle. In tropical perciform fishes, herbivory and fermentation are not associated with the alimentary tract structures that characterise herbivorous terrestrial vertebrates. Estimates of the abundance of the different groupings of nominally herbivorous fishes indicated that the dominant elements in the reef grazing and browsing fauna were consumers of detrital and sedimentary materials. These could not be classified as herbivores. Members of this group were dominant in all habitats investigated. Explicitly herbivorous taxa were a minority component in all habitats investigated.Communicated by G.F. Humphrey, Sydney
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号