Abstract: | ABSTRACT: The reauthorization of the Clean Water Act reemphasizes the need for regional scale monitoring and management of nonpoint pollution loads. The magnitude of the task will require that local governments and their consultants integrate information systems and modeling if they are to manage the massive data sets and conduct the array of simulations that will be needed to support the decision making processes. Interfacing geographic information systems (GIS) and nonpoint pollution modeling is a logical approach. The objective of the present study was to use the 37,000-acre area defined by the Kensington Quadrangle sheet in Montgomery County, Maryland, to show that GIS-supported nonpoint pollution modeling is practical and economically attractive. The purpose of the GIS is to estimate the spatial distribution of nonpoint nitrogen, phosphorous, zinc, lead, BOD, and sediment using a model developed by the Northern Virginia Planning District Commission. The system allows the user to change land uses in subareas to simulate the consequences of additional development or alternate management strategies. The tests show that in-house development of this type of special purpose GIS is a practical alternative to vendor supplied systems and that the required databases can be developed quite reasonably. |