Nitrogen deposition in California forests: a review |
| |
Authors: | Bytnerowicz A Fenn M E |
| |
Affiliation: | Pacific Southwest Research Station, USDA-Forest Service, Forest Fire Laboratory, 4955 Canyon Crest Drive, Riverside, CA 92507, USA. |
| |
Abstract: | Atmospheric concentrations and deposition of the major nitrogenous (N) compounds and their biological effects in California forests are reviewed. Climatic characteristics of California are summarized in light of their effects on pollutant accumulation and transport. Over large areas of the state dry deposition is of greater magnitude than wet deposition due to the arid climate. However, fog deposition can also be significant in areas where seasonal fogs and N pollution sources coincide. The dominance of dry deposition is magnified in airsheds with frequent temperature inversions such as occur in the Los Angeles Air Basin. Most of the deposition in such areas occurs in summer as a result of surface deposition of nitric acid vapor (HNO3) as well as particulate nitrate (NO3-) and ammonium (NH4+). Internal uptake of gaseous N pollutants such as nitrogen dioxide (NO2), nitric oxide (NO), HNO3, peroxyacetyl nitrate (PAN), ammonia (NH3), and others provides additional N to forests. However, summer drought and subsequent lower stomatal conductance of plants tend to limit plant utilization of gaseous N. Nitrogen deposition is much greater than S deposition in California. In locations close to photochemical smog source areas, concentrations of oxidized forms of N (NO2, HNO3, PAN) dominate, while in areas near agricultural activities the importance of reduced N forms (NH3, NH4+) significantly increases. Little data from California forests are available for most of the gaseous N pollutants. Total inorganic N deposition in the most highly-exposed forests in the Los Angeles Air Basin may be as high as 25-45 kg ha(-1) year(-1). Nitrogen deposition in these highly-exposed areas has led to N saturation of chaparral and mixed conifer stands. In N saturated forests high concentrations of NO3- are found in streamwater, soil solution, and in foliage. Nitric oxide emissions from soil and foliar N:P ratios are also high in N saturated sites. Further research is needed to determine the ecological effects of chronic N deposition, and to develop appropriate management options for protecting water quality and managing plant nutrient resources in ecosystems which no longer retain excess N. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|