首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An isoprene mechanism intercomparison
Authors:AT Archibald  ME Jenkin  DE Shallcross
Institution:1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China;2. Chengdu Academy of Environmental Sciences, Chengdu, China;3. Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, 100871, Beijing, China
Abstract:The chemical mechanisms describing the photo-oxidation of isoprene in current Chemistry Transport Models (CTMs) have been intercompared in a series of box model experiments. The mechanisms ranged in size and complexity from ~600 reactions to ~25 reactions. The box model experiments covered two isoprene emission strengths over a broad range of NO emissions to assess the performances of the mechanisms over the spectrum of atmospherically relevant conditions. There was some variability in the simulated oxidation rates of isoprene and formation rates of ozone. The variability in performance is a consequence of the details of the underlying chemistry as represented in the mechanisms, and of the different assumptions and approximations made in mechanism reduction. These differences are illustrated and discussed for a series of species involved in the degradation of isoprene and the ozone formation mechanism, namely: HOx radicals; organic peroxy radicals (RO2); hydroperoxides; oxidised organic nitrogen compounds; and major carbonyl products. The results also confirm that all the considered isoprene mechanisms are unable to generate/recycle HOx at the rates needed to match recently reported observations at locations characterized by low levels of NOx.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号