首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula
Authors:Rafael Borge  Javier López  Julio Lumbreras  Adolfo Narros  Encarnación Rodríguez
Affiliation:1. Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain;2. Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid (UPM), Madrid, Spain;3. National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC 27711, United States
Abstract:The influence of chemical boundary conditions (BC) on the response of the Community Multiscale Air Quality (CMAQ) model over the Iberian Peninsula was investigated in this study. Three strategies to supply boundary conditions in the context of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) were tested. Alternative methods consist in providing BC from (1) fixed, time-independent, concentration profiles, (2) concentrations predicted in a CMAQ mother domain (48 km, 1 h resolution) and (3) concentration values from the GEOS-Chem chemical-transport global model (2 × 2.5°, 3 h resolution). High resolution (3 km) simulated concentrations of the main pollutants (NO2, NO, SO2, O3, PM10 and PM2.5) were compared through a comprehensive statistical analysis including observational data from 165 monitoring stations all over the Iberian Peninsula. It was found that model sensitivity to BC for nitrogen and sulphur oxides was limited, being restricted to the vicinity of model boundaries. However, significant domain-wide differences were found when modelling ozone and PM depending on the BC provided to run the tests. Although model performance was affected by spatial and seasonal factors, the results indicate that model-derived, dynamic BC improved CMAQ predictions when compared to those based on static concentrations prescribed in the boundaries. Aggregated statistics suggest that the GEOS-Chem produced the best results for O3 and PM2.5 while NO2 and PM10 were slightly better predicted under the CMAQ nesting approach. Besides the statistical evaluation some other relevant issues in the context of Integrated Assessment Modelling (IAM) are discussed to gain a better insight into the suitability of the methods analyzed and limitations of downscaling methods. Despite being useful to get a better understanding of the role of BC in SIMCA, this study contributed to highlight model deficiencies and therefore to point out future research needs to improve IAM activities in the Iberian Peninsula.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号