首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Desorption Kinetics of Benzene in a Sandy Soil in the Presence of Powdered Activated Carbon
Authors:J-W Choi  S-B Kim  D-J Kim
Institution:(1) Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, Korea;(2) Environmental Remediation Engineering Laboratory, Program in Rural System Engineering, Seoul National University, Seoul, 151-921, Korea
Abstract:Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption–desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q irr) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption–desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q irr) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4–40 times) rate constant for rapid process (k 1) than that for slow process (k 2), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.
Keywords:Benzene  Desorption kinetics  Powdered activated carbon  Sorption–  desorption  Desorption-resistant
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号