首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China
Authors:Mei Zheng  Yuan Cheng  Limin Zeng and Yuanhang Zhang
Institution:1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. E-mail: mzheng@pku.edu.cn ;School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
3. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. E-mail: mzheng@pku.edu.cn
Abstract:PM2.5 samples were collected in a regional sampling network with three sites in Hong Kong and four sites in the adjacent inland Pearl River Delta (PRD) or Guangdong Province during four months/seasons from 2002-2003. Trans-boundary transport between Hong Kong and the inland PRD is inevitable under the influence of Asian monsoon. In summer, Hong Kong serves as the upwind site of the inland PRD while during other seasons it is under the influence of continental emissions. Previous studies have recognized the importance of using chemical signatures to differentiate local vs. regional contributions to air pollutants in Hong Kong such as the CO/NOx ratio, ratios of different VOC species. In this study, detailed chemical speciation by gas chromatography-mass spectrometry was performed with PM2.5 samples to identify new chemical signatures to distinguish aerosols in Hong Kong from those from the inland PRD. Since Hong Kong is not influenced by the continental emissions from the inland PRD during summer, comparison focused on chemical data obtained from this season for chemical signatures. The new ratios developed from the current study include LCPI/HCPI ratio of alkanes (0.39 +/- 0.02 in Hong Kong vs. 0.78 +/- 0.08 in the inland PRD), pyrene to benzoghi]perylene ratio (0.97 +/- 0.21 in Hong Kong compared to 0.20 +/- 0.06 in the inland PRD), and the ratio of 1,2-benzenedioic acid to 1,4-benzenedioic acid (1.8 +/- 0.1 in Hong Kong vs. 0.6 +/- 0.05 in the inland PRD). Results from this study also revealed that Hong Kong was impacted by ship emissions as reflected by substantially high V/Ni ratio (9 +/- 2) while this ratio was about 1-2 at all sites in the inland PRD, which is very close to typical ratios from residual oil combustion.
Keywords:PM2:5  chemical signature  local and regional air pollution  Hong Kong  Pearl River Delta
本文献已被 维普 万方数据 PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号