首页 | 本学科首页   官方微博 | 高级检索  
     检索      

低碳源条件下改良双污泥系统脱氮除磷优化研究
引用本文:杨伟强,王冬波,李小明,杨麒,徐秋翔,张志贝,李志军,向海弘,王亚利,孙剑.低碳源条件下改良双污泥系统脱氮除磷优化研究[J].环境科学,2016,37(4):1492-1498.
作者姓名:杨伟强  王冬波  李小明  杨麒  徐秋翔  张志贝  李志军  向海弘  王亚利  孙剑
作者单位:湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;湖南大学环境科学与工程学院, 长沙 410082;环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:国家自然科学基金项目(51278175,51378188,51478170); 国际科技合作项目(2012DFB30030-03)
摘    要:在低碳源废水条件下,通过对改良后的双污泥处理工艺与传统厌氧-好氧-缺氧工艺效果进行比较分析,探究解决城市生活污水碳源不足的方法.实验组反应器为改良型双污泥系统,即在原双污泥系统缺氧段增加两个阶段的微曝气(曝气量0.5 L·min~(-1)),对照组反应器为多级厌氧-好氧-缺氧SBR.结果表明,进水COD、氨氮、SOP浓度分别为200、35、10 mg·L-1时,实验组比对照组脱氮除磷效果好(去除率分别为:TN 94.8%与60.9%;TP 96.5%与75%),出水SOP浓度0.35 mg·L-1,NH+4-N浓度0.50 mg·L-1,TN浓度1.82 mg·L-1,完全满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准.采用优化后的工艺,单位碳源(以COD计)可实现的最大的氮、磷的去除量分别为0.17 g·g-1和0.048 g·g-1,可以最大程度地解决当前城市废水碳源浓度较低的问题.

关 键 词:低碳源  改良双污泥系统  微曝气  脱氮除磷  反硝化聚磷菌
收稿时间:2015/10/17 0:00:00
修稿时间:2015/11/15 0:00:00

Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two-sludge System Under the Condition of Low Carbon Source
YANG Wei-qiang,WANG Dong-bo,LI Xiao-ming,YANG Qi,XU Qiu-xiang,ZHANG Zhi-bei,LI Zhi-jun,XIANG Hai-hong,WANG Ya-li and SUN Jian.Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two-sludge System Under the Condition of Low Carbon Source[J].Chinese Journal of Environmental Science,2016,37(4):1492-1498.
Authors:YANG Wei-qiang  WANG Dong-bo  LI Xiao-ming  YANG Qi  XU Qiu-xiang  ZHANG Zhi-bei  LI Zhi-jun  XIANG Hai-hong  WANG Ya-li and SUN Jian
Institution:College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
Abstract:This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L ·min-1) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg ·L-1, the NPR effect of the experimental reactor was better than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg ·L-1, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g ·g-1 and 0.048 g ·g-1 respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.
Keywords:low carbon source  modified two-sludge system  micro-aeration  nitrogen and phosphorus removal (NPR)  denitrifying phosphate-accumulating organisms (DPAOs)
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号