首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City
Authors:Dong Zhou  Chun-Juan Bi  Zhen-Lou Chen  Zhong-Jie Yu  Jun Wang  Jing-Chao Han
Institution:1. Department of Environmental Sciences, School of Resources and Environmental Science, East China Normal University, Shanghai, 200241, China
2. Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resources and Environmental Science, East China Normal University, Shanghai, 200241, China
3. Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, 07102, USA
Abstract:Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg?·?L?1, 0.01 to 0.48 mg?·?L?1, and 0.02 to 2.43 mg?·?L?1, respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p?<?0.01), while TDP was positively correlated with BOD/COD only (p?<?0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p?<?0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p?<?0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号