首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge
Authors:Noora Perkola  Pirjo Sainio
Institution:1. Research and Innovation Laboratory, Finnish Environment Institute, Hakuninmaantie 6, (P.O. Box 140), 00251, Helsinki, Finland
Abstract:The objective of the Control of Hazardous Substances in the Baltic Sea (COHIBA) project is to support the implementation of the HELCOM Baltic Sea Action Plan regarding hazardous substances by developing joint actions to achieve the goal of “a Baltic Sea with life undisturbed by hazardous substances”. One aim in the project was to identify the most important sources of 11 hazardous substances of special concern in the Baltic Sea. Among them are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In this study, four perfluorinated alkyl acids (PFAAs) were studied: PFOA, PFOS, perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA). The occurrence of PFAAs in municipal and industrial wastewater treatment plant effluents (MWWTP1-3, IWWTP1), target industry effluent, storm water, landfill leachate and sludge was studied. Effluents were analysed six times and storm water, leachate and sludge were analysed twice, once in the warm season and once in the cold, during a 1-year sampling campaign. PFOS prevailed in two municipal effluents (MWWTP1 and 3) and industrial effluent (IWWTP1; 7.8–14, 8.0–640 and 320–1,300 ng/l, respectively). However, in one municipal effluent (MWWTP2) PFOA was, in a majority of sampling occasions, the predominant PFAA (9–15 ng/l) followed by PFOS (3.8–20 ng/l). The highest PFAA loads of the municipal effluents were found in the MWWTP3 receiving the biggest portion of industrial wastewater. In storm water the highest concentration was found for PFHxA (17 ng/l). The highest concentration of PFOS and PFOA were 9.9 and 5.1 ng/l, respectively. PFOS, PFOA and PFHxA were detected in every effluent, storm water and landfill leachate sample, whereas PFDA was detected in most of the samples (77 %). In the target industry, PFOS concentrations varied between 1,400 and 18,000 μg/l. In addition, on one sampling occasion PFOA and PFHxA were found (0.027 and 0.009 μg/l, respectively). For effluents, PFAA mass flows into the Baltic Sea were calculated. For municipal wastewater treatment plants average mass flows per day varied for PFOS between 1,073 and 38,880 mg/day, for PFOA 960 and 2,700 mg/day, for PFHxA 408 and 1,269 mg/day and for PFDA 84 and 270 mg/day. In IWWTP mass flows for PFOS, PFOA, PFHxA and PFDA were 495 mg/d, 28 mg/d, 23 mg/d and 0.6 mg/g, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号