Effects of landfill gas on subtropical woody plants |
| |
Authors: | G. Y. S. Chan M. H. Wong B. A. Whitton |
| |
Affiliation: | (1) Department of Biology, Hong Kong Baptist College, 224 Waterloo Road, Kowloon, Hong Kong;(2) Department of Biological Sciences, University of Durham, DH1 3LE Durham, England |
| |
Abstract: | An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species (Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, andTristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth ofAporusa chinensis, Bombax malabaricum, Machilus breviflora, andTristania confera was stimulated by the gas, with shallow root systems being induced.Acacia confusa, Albizzia lebbek, andLitsea glutinosa were gas-tolerant, while root growth ofCastanopsis fissa, Liquidambar formosana, andPinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions beingBombax malabaricum, Liquidambar formosana, andTristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration.Acacia confusa, Albizzia lebbek, andTristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance. |
| |
Keywords: | Landfill gas Tree Root growth Carbon dioxide Methane |
本文献已被 SpringerLink 等数据库收录! |
|